ACLS Provider Manual
Supplementary Material
Contents

Airway Management ... 4

<table>
<thead>
<tr>
<th>Part 1: Basic Airway Management</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices to Provide Supplementary Oxygen</td>
<td>4</td>
</tr>
<tr>
<td>Overview</td>
<td>4</td>
</tr>
<tr>
<td>Oxygen Supply</td>
<td>5</td>
</tr>
<tr>
<td>Nasal Cannula</td>
<td>5</td>
</tr>
<tr>
<td>Simple Oxygen Face Mask</td>
<td>6</td>
</tr>
<tr>
<td>Venturi Mask</td>
<td>6</td>
</tr>
<tr>
<td>Face Mask With Oxygen Reservoir</td>
<td>7</td>
</tr>
</tbody>
</table>

Bag-Mask Ventilation ... 9

<table>
<thead>
<tr>
<th>Part 2: Advanced Airway Management</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Airway Adjuncts: Laryngeal Mask Airway</td>
<td>12</td>
</tr>
<tr>
<td>Overview</td>
<td>12</td>
</tr>
<tr>
<td>Insertion of the Laryngeal Mask Airway</td>
<td>13</td>
</tr>
<tr>
<td>Advanced Airway Adjuncts: Laryngeal Tube</td>
<td>15</td>
</tr>
<tr>
<td>Overview</td>
<td>15</td>
</tr>
<tr>
<td>Insertion of the Laryngeal Tube</td>
<td>16</td>
</tr>
<tr>
<td>Advanced Airway Adjuncts: Esophageal-Tracheal Tube</td>
<td>17</td>
</tr>
<tr>
<td>Overview</td>
<td>17</td>
</tr>
<tr>
<td>Insertion of the Esophageal-Tracheal Tube</td>
<td>19</td>
</tr>
<tr>
<td>Advanced Airway Adjuncts: Endotracheal Intubation</td>
<td>21</td>
</tr>
<tr>
<td>Overview</td>
<td>21</td>
</tr>
<tr>
<td>Technique of Endotracheal Intubation</td>
<td>22</td>
</tr>
<tr>
<td>Indications for Endotracheal Intubation</td>
<td>24</td>
</tr>
<tr>
<td>Ventilating With an ET Tube in Place During Chest Compressions</td>
<td>25</td>
</tr>
<tr>
<td>Tube Trauma and Adverse Effects</td>
<td>25</td>
</tr>
<tr>
<td>Insertion of ET Tube Into One Bronchus</td>
<td>26</td>
</tr>
<tr>
<td>Confirmation of ET Tube Placement: Physical Exam</td>
<td>27</td>
</tr>
<tr>
<td>Confirmation of ET Tube Placement: Qualitative and Quantitative Devices</td>
<td>28</td>
</tr>
<tr>
<td>Waveform Capnography</td>
<td>28</td>
</tr>
<tr>
<td>Quantitative End-Tidal CO₂ Monitors (Capnometry)</td>
<td>30</td>
</tr>
<tr>
<td>Exhaled (Qualitative) CO₂ Detectors</td>
<td>30</td>
</tr>
<tr>
<td>Esophageal Detector Devices</td>
<td>31</td>
</tr>
<tr>
<td>The Impedance Threshold Device (ITD)</td>
<td>35</td>
</tr>
</tbody>
</table>

ACLS Core Rhythms .. 36

<table>
<thead>
<tr>
<th>Part 1: Recognition of Core ECG Arrest Rhythms</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Basics</td>
<td>36</td>
</tr>
<tr>
<td>Cardiac Arrest Rhythms and Conditions</td>
<td>37</td>
</tr>
<tr>
<td>Part 2: Recognition of Selected Nonarrest ECG Rhythms</td>
<td>41</td>
</tr>
<tr>
<td>Recognition of Supraventricular Tachyarrhythmias (SVTs)</td>
<td>41</td>
</tr>
<tr>
<td>Recognition of Ventricular Tachyarrhythmias</td>
<td>45</td>
</tr>
<tr>
<td>Recognition of Sinus Bradycardia</td>
<td>49</td>
</tr>
<tr>
<td>Recognition of Atrioventricular (AV) Block</td>
<td>51</td>
</tr>
</tbody>
</table>

Defibrillation ... 56

<table>
<thead>
<tr>
<th>Defibrillation and Safety</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Defibrillation</td>
<td>56</td>
</tr>
<tr>
<td>Using a Manual Defibrillator/Monitor</td>
<td>56</td>
</tr>
</tbody>
</table>
Safety and Clearing the Patient ... 58
Clearing: You and Your Team .. 58
A Final Note About Defibrillators .. 58
Access for Medications .. 59
Part 1: Introduction .. 59
Correct Priorities .. 59
Intravenous Route ... 59
Intraosseous Route .. 60
Endotracheal Route .. 60
Part 2: Intravenous Access .. 61
Using Peripheral Veins for IV Access ... 61
General IV Principles .. 62
Part 3: Intraosseous Access ... 64
Introduction .. 64
Needles ... 64
Sites .. 64
Indications and Administration ... 64
Contraindications ... 65
Complications .. 65
Equipment Needed ... 65
Procedure .. 65
Follow-up ... 67
Acute Coronary Syndromes .. 68
ST-Elevation Myocardial Infarction (STEMI) Location and AV Block .. 68
Right Ventricular Infarction .. 68
AV Block With Inferior MI ... 69
Fibrinolytic Checklist for STEMI ... 70
Human, Ethical, and Legal Dimensions of ECC and ACLS 71
Part 1: Rescuer and Witness Issues ... 71
How Often Will CPR, Defibrillation, and ACLS Succeed? 71
Take Pride in Your Skills as an ACLS Provider 72
Stress Reactions After Resuscitation Attempts 72
Techniques to Reduce Stress in Rescuers and Witnesses 73
Psychological Barriers to Action ... 73
Part 2: Legal and Ethical Issues ... 75
The Right Thing to Do .. 75
Principle of Futility ... 76
Terminating Resuscitative Efforts ... 76
When Not to Start CPR ... 77
Withholding vs Withdrawing CPR .. 77
Withdrawal of Life Support .. 78
Advance Directives, Living Wills, and Patient Self-Determination .. 80
Out-of-Hospital DNAR Orders ... 80
EMS No-CPR Programs ... 81
Transport .. 81
Legal Aspects of AED Use .. 82
Part 3: Providing Emotional Support for the Family 84
Notifying Survivors of the Death of a Loved One 84
Organ and Tissue Donation .. 84
Airway Management

Part 1: Basic Airway Management

Devices to Provide Supplementary Oxygen

Overview

Oxygen administration is often necessary for patients with acute cardiac disease, pulmonary distress, or stroke. Supplementary oxygen administration, ideally, should be titrated to the lowest concentration required to maintain $\text{SpO}_2 \geq 94\%$. Various devices can deliver supplementary oxygen from 21% to 100% (Table 1). This section describes 4 devices to provide supplementary oxygen:

- Nasal cannula
- Simple oxygen face mask
- Venturi mask
- Face mask with O$_2$ reservoir

Whenever you care for a patient receiving supplementary oxygen, quickly verify the proper function of the oxygen delivery system in use.

Table 1. Delivery of Supplementary Oxygen: Flow Rates and Percentage of Oxygen Delivered.

<table>
<thead>
<tr>
<th>Device</th>
<th>Flow Rates (L/min)</th>
<th>Delivered O$_2$ (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal cannula</td>
<td>1</td>
<td>21 to 24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25 to 28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>29 to 32</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>33 to 36</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>37 to 40</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>41 to 44</td>
</tr>
<tr>
<td>Simple oxygen face mask</td>
<td>6 to 10</td>
<td>35 to 60</td>
</tr>
<tr>
<td>Venturi mask</td>
<td>4 to 8</td>
<td>24 to 40</td>
</tr>
<tr>
<td></td>
<td>10 to 12</td>
<td>40 to 50</td>
</tr>
<tr>
<td>Face mask with oxygen reservoir</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>(nonrebreathing mask)</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>10 to 15</td>
<td>95 to 100</td>
</tr>
</tbody>
</table>

*Percentages are approximate.
Oxygen Supply

Oxygen supply refers to an oxygen cylinder or wall unit that connects to an administration device to deliver oxygen to the patient. When the patient is receiving oxygen from one of these systems, be sure to check the following equipment:

- Oxygen administration device
- Valve handles to open the cylinder
- Pressure gauge
- Flow meter
- Tubing connecting the oxygen supply to the patient’s oxygen administration device

Trained ACLS providers should be sure they are familiar with all emergency equipment before an emergency arises.

Nasal Cannula

The nasal cannula ([Figure 1](#)) is a low-flow oxygen administration system designed to add oxygen to room air when the patient inspires.

A nasal cannula provides up to 44% oxygen. In this low-flow system, inspired air mixes with room air. The ultimate inspired oxygen concentration is determined by the oxygen flow rate through the cannula and how deeply and rapidly the patient breathes (minute ventilation).

Increasing the oxygen flow by 1 L/min (starting with 1 L/min) will increase the inspired oxygen concentration by approximately 4%.

Indications:
- Patients with adequate spontaneous respiratory effort, airway protective mechanism, and tidal volume
- Patients with arterial oxyhemoglobin saturation <94%
- Patients with minimal respiratory or oxygenation problems
- Patients who cannot tolerate a face mask
Simple Oxygen Face Mask

The simple oxygen face mask delivers low-flow oxygen to the patient’s nose and mouth. It can supply up to 60% oxygen with flow rates of 6 to 10 L/min, but the final oxygen concentration is highly dependent on the fit of the mask (Table 1). Oxygen flow rate of at least 6 L/min is needed to prevent rebreathing of exhaled CO₂ and to maintain increased inspired oxygen concentration.

Venturi Mask

Venturi mask enables a more reliable and controlled delivery of oxygen concentrations from 24% to 50% (Table 1). Delivered oxygen concentrations can be adjusted to 24%, 28%, 35%, and 40% using a flow rate of 4 to 8 L/min and 40% to 50% using a flow rate of 10 to 12 L/min. Observe the patient closely for respiratory depression. Use a pulse oximeter to titrate quickly to the preferred level of oxygen administration.

- A Venturi mask can accurately control the inspired oxygen concentration. Use this mask in patients with chronic obstructive pulmonary disease (COPD), who usually have chronic hypercarbia (high CO₂) and mild to moderate hypoxemia.
- Administration of high oxygen concentrations to patients with end-stage COPD may produce respiratory depression because the increase in PaO₂ eliminates the stimulant effect of hypoxemia on the respiratory centers.
- Never withhold oxygen from patients who have respiratory distress and severe hypoxemia simply because you suspect a hypoxic ventilatory drive. If oxygen administration depresses
The face mask with oxygen reservoir is a partial rebreathing mask that consists of a face mask with an attached reservoir bag (Figure 2). A face mask with oxygen reservoir (nonrebreathing mask) provides up to 95% to 100% oxygen with flow rates of 10 to 15 L/min (Table 1). In this system a constant flow of oxygen enters an attached reservoir.

Use of a face mask with a reservoir is indicated for patients who

- Are seriously ill, responsive, spontaneously breathing, have adequate tidal volume, and require high oxygen concentrations
- May avoid endotracheal intubation if acute interventions produce a rapid clinical effect (eg, patients with acute pulmonary edema, COPD, or severe asthma)
- Have relative indications for advanced airway management, but maintain intact airway protective reflexes, such as gag and cough
- Have relative indications for advanced airway management, but have physical barriers to immediate intubation, such as cervical spine injury
- Are being prepared for advanced airway management

Precautions

The above patients may have a diminished level of consciousness and may be at risk for nausea and vomiting. A tight-fitting mask
always requires close monitoring. Suctioning devices should be immediately available. Additionally, prolonged exposure to high inspired oxygen concentration could be detrimental when PaO₂ is high (ie, >300 mm Hg) and arterial oxyhemoglobin saturation is 100%. When feasible, the minimum supplementary oxygen needed to maintain arterial oxyhemoglobin saturation ≥94% should be used.
Bag-Mask Ventilation

Overview

The bag-mask device typically consists of a self-inflating bag and a nonrebreathing valve; it may be used with a face mask or an advanced airway (Figure 3). Masks are made of transparent material to allow detection of regurgitation. They should be capable of creating a tight seal on the face, covering both mouth and nose. Bag-masks are available in adult and pediatric sizes. These devices are used to deliver high concentrations of oxygen by positive pressure to a patient who is not breathing. Some devices have a port to add positive end-expiratory pressure (PEEP).

Bag-mask ventilation is a challenging skill that requires considerable practice for competency. Bag-mask ventilation is not the recommended method of ventilation for a lone rescuer during cardiopulmonary resuscitation (CPR). It is easier to provide by 2 trained and experienced rescuers. One rescuer opens the airway and seals the mask to the face while the other squeezes the bag, with both rescuers watching for visible chest rise. Healthcare providers can provide bag-mask ventilation with room air or oxygen if they use a self-inflating bag. This device provides positive-pressure ventilation when used without an advanced airway and, therefore, may produce gastric inflation and its consequent complications.

Tips for Performing Bag-Mask Ventilation

- Insert an oropharyngeal airway (OPA) as soon as possible if the patient has no cough or gag reflex to help maintain the airway.
- Use an adult (1- to 2-L) bag to deliver approximately 600 mL tidal volume for adult patients. This amount is usually sufficient to produce visible chest rise and maintain oxygenation and normal carbon dioxide levels in apneic patients.
- To create a leak-proof mask seal, perform and maintain a head tilt, and then use the thumb and index finger to make a “C,” pressing the edges of the mask to the face. Next use the remaining fingers to lift the angle of the jaw and open the airway (Figure 3A).
- To create an effective mask seal, the hand holding the mask must perform multiple tasks simultaneously: maintaining the head-tilt position, pressing the mask against the face, and lifting the jaw.
- Two well-trained, experienced healthcare providers are preferred during bag-mask ventilation (Figure 3B).

The seal and volume problems do not occur when the bag-mask device is attached to the end of an advanced airway device (eg, laryngeal mask airway, laryngeal tube, esophageal-tracheal tube, or endotracheal tube [ET tube]).
Figure 3A. E-C clamp technique of holding mask while lifting the jaw. Position yourself at the patient’s head. Circle the thumb and first finger around the top of the mask (forming a “C”) while using the third, fourth, and fifth fingers (forming an “E”) to lift the jaw. B, Two-rescuer use of the bag-mask. The rescuer at the patient’s head tilts the patient’s head and seals the mask against the patient’s face with the thumb and first finger of each hand creating a “C” to provide a complete seal around the edges of the mask. The rescuer uses the remaining 3 fingers (the “E”) to lift the jaw (this holds the airway open). The second rescuer slowly squeezes the bag (over 1 second) until the chest rises. Both rescuers should observe chest rise.
Ventilation With an Advanced Airway and Chest Compressions

- When the patient has an advanced airway in place during CPR, 2 providers no longer deliver cycles of 30 compressions and 2 breaths (ie, compressions interrupted by pauses for ventilation).
- Deliver chest compressions at a rate of at least 100 per minute.
- Deliver 1 ventilation every 6 to 8 seconds (approximately 8 to 10 breaths per minute).
- Switch roles every 2 minutes to prevent compressor fatigue and deterioration in the quality and rate of chest compressions.
- Minimize interruptions in chest compressions.
- Avoid excessive ventilation (too many breaths or too large a volume).
Advanced Airway Adjuncts: Laryngeal Mask Airway

Overview
The laryngeal mask airway is composed of a tube with a cuffed mask-like projection at the end of the tube (Figure 4). The laryngeal mask airway is an advanced airway device that is considered an acceptable alternative to the ET tube. When compared with the ET tube, the laryngeal mask airway provided equivalent ventilation during CPR in 72% to 97% of patients. A small proportion of patients cannot be ventilated with the laryngeal mask airway. Therefore it is important for providers to have an alternative strategy for airway management.

The advantages of laryngeal mask airway:
- Regurgitation is less likely with the laryngeal mask airway than with the bag-mask device.
- Aspiration is uncommon with laryngeal mask airways.
- Because insertion of the laryngeal mask airway does not require laryngoscopy and visualization of the vocal cords, training in its placement and use is simpler than for endotracheal intubation.
- Laryngeal mask airway insertion is easier than ET tube insertion when access to the patient is limited, there is a possibility of unstable neck injury, or appropriate positioning of the patient for endotracheal intubation is impossible.

Figure 4. Laryngeal mask airway.
The steps for insertion of the laryngeal mask airway (Figure 5) are as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient preparation: Provide oxygenation and ventilation, and position the patient.</td>
</tr>
<tr>
<td>2</td>
<td>Equipment preparation: Check the integrity of the mask and tube according to the manufacturer’s instructions. Lubricate only the posterior surface of the cuff to avoid blocking the airway aperture.</td>
</tr>
</tbody>
</table>
| 3 | **Insertion technique (Figure 5):**
| | • Introduce the laryngeal mask airway into the pharynx and advance it blindly until you feel resistance. Resistance indicates that the distal end of the tube has reached the hypopharynx. |
| | • Inflate the cuff of the mask. Cuff inflation pushes the mask up against the tracheal opening, allowing air to flow through the tube and into the trachea. |
| | • Ventilation through the tube is ultimately delivered to the opening in the center of the mask and into the trachea. |
| | • To avoid trauma, do not use force at any time during insertion of the laryngeal mask airway. |
| | • Avoid overinflating the cuff. Excessive intracuff pressure can result in misplacement of the device. It also can cause pharyngolaryngeal injury (eg, sore throat, dysphagia, or nerve injury). |
| 4 | Insert a bite-block (if the laryngeal mask airway does not have intrinsic bite-block), provide ventilation, and continue to monitor the patient’s condition and the position of the laryngeal mask airway. A bite-block reduces the possibility of airway obstruction and tube damage. Keep the bite-block in place until you remove the laryngeal mask airway. |
Cautions/Additional Information

- Do not apply cricoid pressure because it may hinder the insertion of the laryngeal mask airway. Eight studies in anesthetized adults showed that when cricoid pressure was used before insertion of a laryngeal mask airway, the proportion of tubes correctly positioned was reduced, and the incidence of failed insertion and impaired ventilation once the laryngeal mask airway had been placed increased.
- In general, size 5 fits adult males and size 4 fits adult females.
- You may note a smooth swelling at the level of the cricoid cartilage in the neck. This is normal, and it confirms the proper positioning of the device.
- If you hear an air leak during ventilation with a bag for the next 3 or 4 breaths, reevaluate the position of the laryngeal mask airway for possible misplacement.
- To avoid displacement, limit the patient’s head movement and avoid suctioning secretions in the pharynx once the laryngeal mask airway is in place.

Disadvantages

A small proportion of patients cannot be ventilated with the laryngeal mask airway; therefore it is important for providers to have an alternative strategy for airway management.
Overview

The laryngeal tube is a supraglottic airway device that is considered an acceptable alternative to an ET tube. The laryngeal tube is available in single and dual lumen versions. Only experienced providers should perform laryngeal tube insertion.

At the time of writing the 2010 AHA Guidelines for CPR and ECC, there were limited data published on the use of the laryngeal tube in cardiac arrest. In one case series assessing 40 out-of-hospital cardiac arrest patients, insertion of the laryngeal tube by trained paramedics was successful and ventilation was effective in 85% of patients. Another out-of-hospital assessment of 157 attempts at laryngeal tube placement revealed a 97% success rate in a mixed population of cardiac arrest and noncardiac arrest patients.

The advantages of the laryngeal tube are ease of training and ease of insertion due to its compact size. In addition, it isolates the airway, reduces the risk of aspiration, and provides reliable ventilation. Trained healthcare professionals may consider the laryngeal tube as an alternative to bag-mask ventilation or endotracheal intubation for airway management in cardiac arrest.

Figure 6. Laryngeal tube.
Insertion of the Laryngeal Tube

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient preparation: Provide oxygenation and ventilation, and position the patient.</td>
</tr>
<tr>
<td>2</td>
<td>Equipment preparation: Check the integrity of the laryngeal tube according to the manufacturer's instructions.</td>
</tr>
</tbody>
</table>
| 3 | Insertion technique:
 - Inspect the mouth and larynx of the patient before insertion of the laryngeal tube.
 - Open the mouth of the patient by approximately 2 to 3 cm using the “thumb and index finger” technique.
 - Insert the laryngeal tube in the midline of the mouth along the palate until a slight resistance is felt.
 - In some cases a slight head extension can facilitate mouth opening and tube placement.
 - Ensure that the ventilation holes of the laryngeal tube lie in front of the laryngeal inlet.
 - The insertion depth can be verified according to the teeth marks at the upper end of the tube.
 - The laryngeal tube is available in different sizes. |

Figure 7. Positioning of the laryngeal tube.
Advanced Airway Adjuncts: Esophageal-Tracheal Tube

Overview

The esophageal-tracheal tube (Figure 8) is an advanced airway that is an acceptable alternative to the ET tube. The esophageal-tracheal tube is an invasive airway device with 2 inflatable balloon cuffs. The tube is more likely to enter the esophagus than the trachea thereby allowing ventilation to occur through side openings in the device adjacent to the vocal cords and trachea. If the tube enters the trachea, ventilation can still occur by an opening in the end of the tube.

Studies show that healthcare providers with all levels of experience can insert the esophageal-tracheal tube and deliver ventilation comparable to that achieved with endotracheal intubation. Compared with bag-mask ventilation, the esophageal-tracheal tube is advantageous because it isolates the airway, reduces the risk of aspiration, and provides more reliable ventilation. The advantages of the esophageal-tracheal tube are chiefly related to ease of training when compared with the training needed for endotracheal intubation. Only providers trained and experienced with the use of the esophageal-tracheal tube should insert the device because fatal complications are possible if the position of the distal lumen of the esophageal-tracheal tube in the esophagus or trachea is identified incorrectly. Other possible complications related to the use of the esophageal-tracheal tube are esophageal trauma, including lacerations, bruising, and subcutaneous emphysema. The esophageal-tracheal tube is supplied in 2 sizes: the smaller size (37F) is used in patients 4 to 5.5 feet tall, and the larger size (41F) is used in patients more than 5 feet tall.

Contraindications

- Responsive patients with cough or gag reflex
- Age: 16 years or younger
- Height: 4 feet or shorter
- Known or suspected esophageal disease
- Ingestion of a caustic substance
Figure 8. Esophageal-tracheal tube.

Figure 9. Esophageal-tracheal tube inserted in esophagus.

At the H point on Figures 8 and 9, rescuers hands should be holding/anchoring the tube in place. With the bag-mask squeeze, potential movement of the invasive airways may occur.
The steps for blind insertion of the esophageal-tracheal tube are as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Patient preparation: Provide oxygenation and ventilation, and position the patient. Rule out the contraindications to insertion of the esophageal-tracheal tube.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Equipment preparation: Check the integrity of both cuffs according to the manufacturer’s instructions and lubricate the tube.</td>
</tr>
<tr>
<td>3</td>
<td>Insertion technique:</td>
</tr>
<tr>
<td></td>
<td>• Hold the device with cuffs deflated so that the curvature of the tube matches the curvature of the pharynx.</td>
</tr>
<tr>
<td></td>
<td>• Lift the jaw and insert the tube gently until the black lines (H) on the tube (Figures 8 and 9) are positioned between the patient’s upper teeth. Do not force insertion and do not attempt for more than 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Inflate the proximal/pharyngeal (blue) cuff with 100 mL of air. (Inflate with 85 mL for the smaller esophageal-tracheal tube.) Then inflate the distal (white or clear) cuff with 15 mL of air. (Inflate with 12 mL for the smaller esophageal-tracheal tube.)</td>
</tr>
<tr>
<td>4</td>
<td>Confirm tube location and select the lumen for ventilation. To select the appropriate lumen to use for ventilation, you must determine where the tip of the tube is located. The tip of the tube can rest in either the esophagus or the trachea.</td>
</tr>
<tr>
<td></td>
<td>• Esophageal placement: To confirm esophageal placement, attach the bag-mask to the blue (proximal/pharyngeal) lumen. Squeezing the bag provides ventilation by forcing air through the openings in the tube between the 2 inflated cuffs. This action produces bilateral breath sounds. Epigastric sounds do not occur because the distal cuff, once inflated, obstructs the esophagus thereby preventing airflow into the stomach. Because the tip of the tube rests in the esophagus, do not use the distal (white or clear) tube for ventilation.</td>
</tr>
<tr>
<td></td>
<td>• Tracheal placement: If squeezing the bag attached to the blue (proximal/pharyngeal lumen) does not produce breath sounds, immediately disconnect the bag and reattach it to the distal (white or clear) lumen. Squeezing the bag should now produce breath sounds because this lumen goes to the trachea. With endotracheal placement of the tube, the distal cuff performs...</td>
</tr>
</tbody>
</table>
the same function as a cuff on an ET tube. Detection of exhaled CO₂ (through the ventilating lumen) should be used for confirmation, particularly if the patient has a perfusing rhythm.

- **Unknown placement:** If you are unable to hear breath sounds, deflate both cuffs and withdraw the tube slightly. Reinflate both cuffs (see steps above) and attempt to ventilate the patient. If breath sounds and epigastric sounds are still absent, remove the tube.

Cautions/Additional Information
- Do not apply cricoid pressure during insertion because it may hinder the insertion of the esophageal-tracheal tube.

Disadvantages
- Insertion of an esophageal-tracheal tube may cause esophageal trauma, including lacerations, bruising, and subcutaneous emphysema.
- Esophageal-tracheal tube is available in only 2 sizes and cannot be used in any patient less than 4 feet tall.
Advanced Airway Adjuncts: Endotracheal Intubation

Overview

An ET tube is a single-use, cuffed tube that facilitates delivery of a high concentration of oxygen and selected tidal volume to maintain adequate ventilation; placement requires visualization of the patient’s vocal cords.

The advantages of ET tube insertion are

- Maintains patent airway
- May protect the airway from aspiration of stomach contents or other substances in the mouth, throat, or the upper airway
- Permits effective suctioning of the trachea
- Facilitates delivery of PEEP
- Provides alternative route for administration of some resuscitation medications when intravenous (IV) or intraosseous (IO) access cannot be obtained

Providers use the memory aid NAVEL to recall the emergency medications that can be administered by ET tube: naloxone, atropine, vasopressin, epinephrine, and lidocaine.

- Dose is approximately 2 to 2.5 times higher for ET tube administration than the dose for IV/IO administration.
- Mix the dose of drug with 5 to 10 mL of normal saline or sterile water. Studies with epinephrine and lidocaine showed that dilution with water instead of 0.9% saline may achieve better drug absorption.
- Once medication has been administered through the ET tube, perform 1 to 2 ventilations to facilitate deposition of the drug into the airways.

There were no data regarding endotracheal administration of amiodarone at the time of writing the 2010 AHA Guidelines for CPR and ECC.

Note for drugs that can be administered by the endotracheal route: Optimal endotracheal doses have not been established. IV/IO administration is preferred because it provides a more reliable drug delivery and pharmacologic effect.

ET tube insertion was once considered the optimal method of managing the airway during cardiac arrest. However, intubation attempts by unskilled providers can produce complications. Therefore esophageal-tracheal tubes, laryngeal mask airway, and laryngeal tube are now considered acceptable alternatives to the ET tube for advanced airway management.

© 2012 American Heart Association

21
Misplacement of an ET tube can result in severe, even fatal, complications. For this reason only skilled, experienced personnel should perform endotracheal intubation. In most states medical practice acts specify the level of personnel allowed to perform this procedure. For clinical reasons intubation should be restricted to healthcare providers who meet the following criteria:

- Personnel are well trained
- Personnel perform intubation frequently
- Personnel receive frequent refresher training in this skill
- ET tube placement is included in the scope of practice defined by governmental regulations

 and
- Personnel participate in a process of continuous quality improvement to detect frequency of complications and minimize those complications

Placement of an ET tube is an important part of a resuscitation attempt. But it is a much lower priority than providing high-quality continuous chest compressions with few interruptions and delivering defibrillation.

Technique of Endotracheal Intubation

Many ACLS providers do not perform intubation because of the professional restrictions noted above. Nonetheless, all members of the resuscitation team must understand the concept of endotracheal intubation. Team members may assist with endotracheal intubation and must know how to integrate compressions and ventilations when an ET tube is placed. This knowledge is often more important than knowing how to perform the procedure itself.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient preparation: Provide oxygenation and ventilation, and position the patient. Assess the likelihood of difficult ET tube placement based on the patient’s anatomy.</td>
</tr>
<tr>
<td>2</td>
<td>Equipment preparation: Assemble and check all necessary equipment (ET tube and laryngoscope).</td>
</tr>
</tbody>
</table>
| 3 | Insertion Technique:
 - Choose appropriate size ET tube. In general, an 8-mm internal diameter tube is used for adult males, and a 7-mm internal diameter tube is used for adult females.
 - Choose appropriate type (straight or curved) and size laryngoscope blade (Figures 10A and B).
 - Test ET tube cuff integrity.
 - Lubricate and secure stylet inside ET tube.
 - Place head in neutral position.
 - Open the mouth of the patient by using the “thumb
and index finger” technique.

- Insert laryngoscope blade and visualize glottic opening (Figure 11).
- Clear airway if needed.
- Insert ET tube and watch it pass through the vocal cords.
- Inflate ET tube cuff to achieve proper seal.
- Remove laryngoscope blade from the mouth.
- Hold tube with one hand and remove stylet with other hand.
- Insert bite-block.
- Attach bag to tube.
- Squeeze the bag to give breaths (1 second each) while watching for chest rise.
- Assess proper placement by both clinical assessment and device confirmation:
 - Auscultate for breath sounds.
 - Confirm correct positioning of ET tube by quantitative waveform capnography or, if not available, partial pressure end-tidal CO\(_2\) (PETCO\(_2\)) or esophageal detector device (EDD).
- Secure ET tube in place.
- Provide ventilation, and continue to monitor the patient’s condition and the position of the ET tube using continuous waveform capnography.

Figure 10A. Figure 10B.

Figure 10. A, Straight laryngoscope blades. B, Curved laryngoscope blades.
Figure 11. View of the vocal cords.

Indications for Endotracheal Intubation
- Cardiac arrest when bag-mask ventilation is not possible or is ineffective.
- Responsive patient in respiratory compromise who is unable to oxygenate adequately despite noninvasive ventilator measures.
- Patient is unable to protect airway (e.g., coma, areflexia, or cardiac arrest).
- Responsive patient needing intubation requires administration of appropriate medication to inhibit these reflexes.

Cautions/Additional Information
- The incidence of complications is unacceptably high when intubation is performed by inexperienced providers or monitoring of tube placement is inadequate.
- Detailed assessment of out-of-hospital intubation attempts has concluded that ET tubes are much more difficult to place properly in that setting and highly susceptible to dislodgment.
- Healthcare providers can minimize interruptions in chest compressions for endotracheal intubation with advanced preparation. Insert the laryngoscope blade with the tube ready at hand as soon as compressions are paused. Interrupt compressions only to visualize the vocal cords and insert the tube; this is ideally less than 10 seconds. Resume chest compressions immediately after passing the tube between the vocal cords. If the initial intubation attempt is unsuccessful, healthcare providers may make a second attempt, but should consider using a supraglottic airway.
Ventilating With an ET Tube in Place During Chest Compressions

During cardiac arrest provide the following:

Volume: The volume should cause visible chest rise.
- When practicing this skill, try to get a sense of what such a volume feels like when squeezing the ventilation bag.
- Provide slightly more volume for very obese patients.

Rate: Provide 8 to 10 breaths per minute (approximately 1 breath every 6 to 8 seconds) when delivering ventilation during CPR and 10 to 12 breaths per minute (approximately 1 breath every 5 to 6 seconds) for ventilation without chest compressions (ie, for respiratory arrest without cardiac arrest). Each breath should last 1 second.

Compression-ventilation cycles: Once an advanced airway is in place, the healthcare provider should provide chest compressions at a rate of at least 100 per minute without pauses for ventilations. Providers should rotate every 2 minutes.

<table>
<thead>
<tr>
<th>Airway devices</th>
<th>Ventilations during cardiac arrest</th>
<th>Ventilations during respiratory arrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag-mask</td>
<td>2 ventilations after every 30 compressions</td>
<td>1 ventilation every 5 to 6 seconds (10 to 12 breaths per minute)</td>
</tr>
<tr>
<td>Any advanced airway</td>
<td>1 ventilation every 6 to 8 seconds (8 to 10 breaths per minute)</td>
<td></td>
</tr>
</tbody>
</table>

Take care to avoid air trapping in patients with conditions associated with increased resistance to exhalation, such as severe obstructive lung disease and asthma. Air trapping could result in a positive end-expiratory pressure (PEEP) effect that may significantly lower blood pressure. In these patients use slower ventilation rates to allow more complete exhalation. In cases of hypovolemia restore intravascular volume.

Tube Trauma and Adverse Effects

Endotracheal intubation can cause significant trauma to the patient, including
- If the ET tube is inserted into the esophagus, the patient will receive no ventilation or oxygenation unless he or she is still breathing spontaneously. If you or your team fails to recognize esophageal intubation, the patient could suffer permanent
brain damage or die.

- Lacerated lips or tongue from forceful pressure between the laryngoscope blade and the tongue or cheek.
- Chipped teeth.
- Lacerated pharynx or trachea from the end of the stylet or ET tube.
- Injury to the vocal cords.
- Pharyngeal-esophageal perforation.
- Vomiting and aspiration of gastric contents into the lower airway.
- Release of high levels of epinephrine and norepinephrine, which can cause elevated blood pressures, tachycardia, or arrhythmias.

Insertion of ET Tube Into One Bronchus

Insertion of the ET tube into the right (most common) or left main bronchus is a frequent complication. Unrecognized and uncorrected intubation of a bronchus can result in hypoxemia due to underinflation of the uninvolved lung or overinflation of the ventilated lung.

To determine if the ET tube has been inserted into a bronchus, listen to the chest for bilateral breath sounds. Also look for equal expansion of both sides during ventilation.

If you suspect that the tube has been inserted into either the left or right main bronchus, take these actions:

- Deflate the tube cuff.
- Withdraw the tube back 1 to 2 cm.
- Confirm correct tube placement by both clinical assessment and device confirmation.
- Reinflate the cuff and secure ET tube in place.
- Recheck the patient’s clinical signs, including chest expansion, breath sounds, and evidence of oxygenation.

Even when the ET tube is seen to pass through the vocal cords and tube position is verified by chest expansion and auscultation during positive-pressure ventilation, you should obtain additional confirmation of placement using waveform capnography or a PETCO₂ or EDD.

Once the patient is more stable, an x-ray may be obtained to optimize ET tube position and assess lung pathology. An x-ray takes too long to be used as a means of confirming tracheal placement of an ET tube. Recognizing misplacement of an ET tube is a clinical responsibility.

After inserting and confirming correct placement of an ET tube, you should record the depth of the tube as marked at the front
teeth or gums and secure it. Because there is significant potential for ET tube movement with head flexion and extension and when the patient is moved from one location to another, secure the ET tube with tape or a commercial device. Devices and tape should be applied in a manner that avoids compression of the front and sides of the neck to protect against impairment of venous return from the brain.

Confirmation of ET Tube Placement: Physical Exam

Confirm tube placement immediately, assessing the first breath delivered by the bag-mask device. This assessment should not require interruption of chest compressions. You should use both clinical assessment and confirmation devices to verify tube placement immediately after insertion and again when the patient is moved. However, because no single confirmation technique is completely reliable, particularly when cardiac arrest is present, the AHA recommends the use of continuous waveform capnography, in addition to clinical assessment, as the most reliable method of confirming and monitoring of correct placement of an ET tube. If waveform capnography is not available, EDD or non-waveform PETCO₂ monitor, in addition to clinical assessment should be used to confirm ET tube placement.

Assessment by physical examination consists of visualizing chest expansion bilaterally and listening over the epigastrium (breath sounds should not be heard) and the lung fields bilaterally (breath sounds should be equal and adequate).

As the bag is squeezed, listen over the epigastrium and observe the chest wall for movement. If you hear stomach gurgling and see no chest-wall expansion, you have intubated the esophagus. Stop ventilations. Remove the ET tube at once. Then

- Continue chest compressions if CPR is in progress.
- Resume bag-mask ventilation or consider an alternate advanced airway.
- Reattempt intubation only after reoxygenating the patient (approximately 30 seconds of bag-mask ventilations using 100% oxygen).
- If, after intubation, the chest wall rises appropriately and stomach gurgling is not heard, listen to the lung fields with 5-point auscultation: over the stomach, left and right anterior lung fields, and left and right midaxillary lung fields. Document the location of breath sounds in the patient’s medical record. If you have any doubt, stop ventilations through the tube and use the laryngoscope to see if the tube is passing through the vocal cords.
- If still in doubt, remove the tube and provide bag-mask ventilation until the tube can be replaced.
- If the tube seems to be in place, reconfirm the tube mark at the front teeth (previously noted after inserting the tube 1 to 2 cm
past the vocal cords).

- Secure the tube with a commercial device designed for this purpose or with tape, avoiding compression of the front and sides of the neck.
- Once the tube is secured, insert a bite-block if the commercial device used to secure the tube does not prevent the patient from biting down and occluding the airway.

Confirmation of ET Tube Placement: Qualitative and Quantitative Devices

The 2010 AHA Guidelines for CPR and ECC recommend confirmation of ET tube with both clinical assessment and a device. If the device is attached to the bag before it is joined to the tube, it will increase efficiency and decrease the time in which chest compressions must be interrupted.

Detailed assessment of out-of-hospital intubation attempts has concluded that ET tubes are (1) much more difficult to place properly in that setting and (2) highly susceptible to misplacement and displacement. Proper training, supervision, frequent clinical experience, and a process of quality improvement are the keys to achieving successful intubation.

Waveform Capnography

Continuous waveform capnography, in addition to physical assessment, is recommended as the most reliable method of confirming and monitoring correct placement of an ET tube. Providers should observe a persistent capnographic waveform with ventilation to confirm and monitor ET tube placement in the field, in the transport vehicle, on arrival at the hospital, and after any patient transfer to reduce the risk of unrecognized tube misplacement or displacement. Studies of waveform capnography to verify ET tube position in patients in cardiac arrest have shown 100% sensitivity and 100% specificity in identifying correct ET tube placement. Studies of colorimetric PETCO₂ detectors indicate that the accuracy of these devices does not exceed that of auscultation and direct visualization for confirming the tracheal position of an ET tube in patients in cardiac arrest.

The use of capnography to confirm and monitor correct placement of supraglottic airways has not been studied. However effective ventilation through a supraglottic airway device should result in a
capnographic waveform during CPR and after return of spontaneous circulation (ROSC).

Figure 12. Waveform capnography with ET tube.

Figure 13. Waveform capnography. **A,** Normal range (approximately 35 to 45 mm Hg). **B,** Expected waveform with adequate chest compressions in cardiac arrest (approximately 20 mm Hg). **C,** ET tube incorrectly placed or dislodged (0 mm Hg).

Figure 13A.

Figure 13B.

Figure 13C.
Quantitative End-Tidal CO₂ Monitors (Capnometry)

The quantitative end-tidal CO₂ monitor is a hand-held confirmation device. This capnometer provides a single quantitative readout of the concentration of CO₂ at a single point in time. The device provides a continuous display of the level of CO₂ as it varies throughout the ventilation cycle.

These monitors can help confirm successful ET tube placement within seconds of an intubation attempt. They also can detect a patient's deterioration associated with declining clinical status or ET tube displacement. ET tube displacement is an adverse event that is alarmingly common during out-of-hospital transport of a patient.

Exhaled (Qualitative) CO₂ Detectors

A number of commercial devices can react, usually with a color change (different colors for different CO₂ detectors), to CO₂ exhaled from the lungs. This simple method can be used as a secondary method of detecting correct tube placement if waveform capnography is not available, even in the patient in cardiac arrest (Figure 14). The qualitative detection device indicates proper ET tube placement. The absence of a CO₂ response from the detector (ie, results are negative for CO₂) generally means that the tube is in the esophagus, particularly in patients with spontaneous circulation. Studies of colorimetric exhaled CO₂ detectors indicate that the accuracy of these devices does not exceed that of auscultation and direct visualization for confirming the tracheal position of an ET tube in patients of cardiac arrest.

Figure 14. Confirmation of tracheal tube placement with colorimetric exhaled CO₂ detectors. A, Purple color indicates the presence of carbon dioxide and tube in the airway. B, Yellow indicates lack of carbon dioxide and tube probably in the esophagus.
Note that the carbon dioxide detection cannot ensure proper depth of tube insertion. The tube should be held in place and then secured once correct position is verified. Different manufacturers may use different color indicators.

Esophageal Detector Devices

Esophageal detector devices (EDDs) (Figure 15) use simple anatomical principles to determine the location of the distal end of the ET tube. EDD is a secondary method of detecting correct tube placement if waveform capnography is not available. Providers should completely compress the bulb-style EDD before attaching it to the ET tube. The EDD should be used before any breaths are given. After releasing the bulb, if the tube is resting in the
esophagus, reinflation of the bulb produces a vacuum, which pulls the esophageal mucosa against the tip of tube. This results in slow or no re-expansion of the bulb.

With the syringe-style EDDs, the vacuum occurs when the rescuer pulls back on the syringe plunger. Esophageal placement results in the inability of the rescuer to pull back on the plunger.

If the tube rests in the trachea, the vacuum will allow smooth re-expansion of the bulb or aspiration of the syringe.

Figure 15. Esophageal detector device: aspiration bulb technique. Hold the tube in place until you confirm that it is in the correct position and then secure it.

Unlike the end-tidal CO₂ detector, the EDD does not depend on blood flow. However, although the device is generally sensitive for detection of ET tube placement in the esophagus, it is not specific for ET tube placement in the trachea. Although the EDD indicates that the tube is in the trachea by rapid re-expansion of the suction bulb or withdrawal of the plunger, prior CPR or ventilations using a bag can fill the stomach or esophagus with air, permitting bulb re-expansion or plunger withdrawal. The unwary provider, thinking the tube is in the trachea, may leave the tube in the esophagus, a potentially fatal error.

In addition, the EDD may yield misleading results in patients with morbid obesity, late pregnancy, or status asthmaticus. There is no evidence that the EDD is reliable for the continuous monitoring of ET tube placement. For these reasons, the EDD should be considered a less reliable device for confirmation of ET tube placement compared to continuous waveform capnography and physical examination.

See Table 2 for a comparison of the qualitative performance of the
EDD and \(\text{PETCO}_2 \) device in terms of correct responses plus the most common causes of misleading results.

Table 2. Possible causes of misleading results using end-tidal CO\(_2\) detector devices and EDDs to confirm correct placement of the ET tube. The columns (vertical) indicate the reading and actual location of the ET tube. The rows (across) indicate the expected results from using either a colorimetric end-tidal CO\(_2\) detector (A) or bulb-type esophageal detector device (B). With both devices assume that the rescuer made a conscientious intubation effort and thinks the ET tube is in the trachea.

<table>
<thead>
<tr>
<th>Reading</th>
<th>Actual Location of ET Tube: Trachea</th>
<th>Actual Location of ET Tube: Esophagus (or Hypopharynx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Colorimetric End-Tidal CO(_2) Detector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide Detected</td>
<td>ET tube in trachea Proceed with ventilations.</td>
<td>Reasons for apparent CO(_2) detection despite tube in esophagus Causes: Distended stomach, recent ingestion of carbonated beverage, nonpulmonary sources of CO(_2) Consequences: Unrecognized esophageal intubation; can lead to iatrogenic death</td>
</tr>
<tr>
<td>No CO(_2) Detected</td>
<td>No CO(_2) detection with tube in trachea Causes: Low or no blood flow state (eg, cardiac arrest); any cardiac arrest with no, prolonged, or poor CPR Consequences: Leads to unnecessary removal of properly placed ET tube. Reintubation attempts increase chances of other adverse consequences.</td>
<td>No CO(_2) detection and tube is not in trachea (ie, tube is in esophagus) Causes: Rescuer has inserted ET tube in esophagus/hypopharynx. A life-threatening adverse event has been detected. Consequences: Rescuer recognizes ET tube is not in trachea; properly and rapidly identified; tube is removed at once; patient is reintubated.</td>
</tr>
</tbody>
</table>

| **B: Esophageal Detector Device** | | |
| **Consistent With Tube in Esophagus** | *Device suggests tube in esophagus when it is in esophagus.* Causes: Rescuer has inserted tube in esophagus/hypo- | *Device suggests tube in esophagus when it is in trachea.* Causes: Secretions in trachea (mucus, gastric contents, acute pulmonary |
Consequences:
Rescuer correctly recognizes ET tube is in esophagus; ET tube is removed at once; patient is reintubated.

Consequences:
Leads to unnecessary removal of properly placed ET tube. Reintubation attempts increase chances of other adverse consequences.

<table>
<thead>
<tr>
<th>Consistent With Tube in Trachea</th>
<th>Results suggest that tube is NOT in esophagus (ie, that it is in trachea) when tube IS in esophagus. Causes:</th>
<th>Results suggest that tube is NOT in the esophagus (ie, that it is in the trachea) when it IS in the trachea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulb fills immediately or syringe can be aspirated</td>
<td>Conditions that cause increased lung expansion (eg, COPD, status asthmaticus) Conditions that fill stomach with air (eg, recent bag-mask ventilation, mouth-to-mask or mouth-to-mouth breathing) Conditions that cause poor tone in esophageal sphincter or increased gastric pressure (late pregnancy)</td>
<td>Esophageal detector device indicates ET tube is in trachea. Proceed with ventilations.</td>
</tr>
<tr>
<td></td>
<td>Consequences: Unrecognized esophageal intubation can lead to death.</td>
<td></td>
</tr>
</tbody>
</table>
The impedance threshold device (ITD) is a pressure-sensitive valve that is attached to an ET tube, supraglottic airway, or face mask.

The ITD limits air entry into the lungs during the decompression phase of CPR, creating negative intrathoracic pressure and improving venous return to the heart and cardiac output during CPR. It does so without impeding positive pressure ventilation or passive exhalation.

The ITD has also been used during conventional CPR with an ET tube, supraglottic airway, or face mask, if a tight seal is maintained. The use of the ITD may be considered by trained personnel as a CPR adjunct in adult cardiac arrest.
Part 1: Recognition of Core ECG Arrest Rhythms

The Basics

Figure 16 shows the anatomy of the cardiac conduction system and its relationship to the ECG cardiac cycle.

Figure 16A.

Figure 16B.

Figure 16. Anatomy of the cardiac conduction system: relationship to the ECG cardiac cycle.

A, Heart: anatomy of conduction system.

B, Relation of cardiac cycle to conduction system anatomy.
The ECG rhythms/conditions for patients who are in cardiac arrest are ventricular fibrillation (VF), pulseless ventricular tachycardia (VT), asystole, or pulseless electrical activity (PEA, which presents with a variety of rhythms).

These ECG rhythms are shown below:

<table>
<thead>
<tr>
<th>Attach…</th>
<th>Where…</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE lead to RIGHT</td>
<td>Right side of the chest, just beneath the right clavicle</td>
</tr>
<tr>
<td>RED lead to RIBS</td>
<td>Left midaxillary line, below the expected point of maximum impulse of the heart</td>
</tr>
<tr>
<td>The LEAD [that is] LEFT OVER goes to LEFT SHOULDER</td>
<td>Left side of the torso, just beneath the distal end of the left clavicle</td>
</tr>
</tbody>
</table>

Cardiac Arrest	Rhythms and Conditions
The ECG rhythms/conditions for patients who are in cardiac arrest are ventricular fibrillation (VF), pulseless ventricular tachycardia (VT), asystole, or pulseless electrical activity (PEA, which presents with a variety of rhythms).

Ventricular Fibrillation (Figure 17)

<table>
<thead>
<tr>
<th>Pathophysiology</th>
<th>• Ventricles consist of areas of normal myocardium alternating with areas of ischemic, injured, or infarcted myocardium, leading to a chaotic asynchronous pattern of ventricular depolarization and repolarization. Without organized ventricular depolarization the ventricles cannot contract as a unit and they produce no cardiac output. The heart “quivers” and does not pump blood.</th>
</tr>
</thead>
</table>
| Defining Criteria per ECG | • **Rate/QRS complex**: unable to determine; no recognizable P, QRS, or T waves. Baseline undulations occur between 150 and 500 per minute.
• **Rhythm**: indeterminate; pattern of sharp up (peak) and down (trough) deflections.
• **Amplitude**: measured from peak-to-trough; often used subjectively to describe VF as *fine* (peak-to-trough 2 to <5 mm), *medium or moderate* (5 to <10 mm), *coarse* (10 to <15 mm), or *very coarse* (>15 mm). |
| Clinical Manifestations | • Pulse disappears with onset of VF. (The pulse may disappear before the onset of VF if a common precursor to VF, rapid VT, develops before the VF.)
• Collapse, unresponsiveness.
• Agonal gasps or apnea.
Sudden death. |
Common Etiologies

- Acute coronary syndromes (ACS) leading to ischemic areas of myocardium
- Stable to unstable VT, untreated
- Premature ventricular complexes (PVCs) with R-on-T phenomenon
- Multiple drug, electrolyte, or acid-base abnormalities that prolong the relative refractory period
- Primary or secondary QT prolongation
- Electrocution, hypoxia, many others

Figure 17A.

Coarse ventricular fibrillation. Note high-amplitude waveforms, which vary in size, shape, and rhythm, representing chaotic ventricular electrical activity. The ECG criteria for VF are as follows:
1. QRS complexes: no normal-looking QRS complexes are recognizable; a regular negative-positive-negative pattern (Q-R-S) cannot be seen.
2. Rate: uncountable; electrical deflections are very rapid and too disorganized to count.
3. Rhythm: no regular rhythmic pattern can be discerned; the electrical waveforms vary in size and shape; the pattern is completely disorganized.

Figure 17B.

In comparison with Figure 17A, the amplitude of electrical activity is much reduced. Note the complete absence of QRS complexes. In terms of electrophysiology, prognosis, and the likely clinical response to attempted defibrillation, adrenergic agents, or antiarrhythmics, this rhythm pattern may be difficult to distinguish from that of asystole.
Pulseless Electrical Activity (PEA)

Pathophysiology
- Cardiac conduction impulses occur in an organized pattern but do not produce myocardial contraction (this condition was formerly called electromechanical dissociation); or insufficient ventricular filling during diastole; or ineffective contractions

Defining Criteria per ECG
- Rhythm displays organized electrical activity (not VF/pulseless VT).
- Usually not as organized as normal sinus rhythm
- Can be narrow (QRS <0.12 second) or wide (QRS ≥0.12 second); fast (>100 beats per minute) or slow (<60 beats per minute).
- Narrow QRS and fast heart rate are mostly caused by noncardiac etiology. Wide QRS and slow heart rate are mostly caused by cardiac etiology.

Clinical Manifestations
- Collapse, unresponsiveness.
- Agonal gasps or apnea.
- No pulse detectable by palpation. (Very low systolic blood pressure could still be present in such cases.)
- The rhythm seen with PEA may assist in identifying PEA etiology.

Common Etiologies
Use the H’s and T’s mnemonic to recall possible causes of PEA:
- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
- Hypothermia
- Toxins (ie, drug overdose, ingestion)
- Tamponade, cardiac
- Tension pneumothorax
- Thrombosis, coronary (ACS)
- Thrombosis, pulmonary (embolism)

Asystole (Figure 18)

Defining Criteria per ECG
Classically asystole presents as a “flat line”; defining criteria are virtually nonexistent
- Rate: no ventricular activity seen or ≤6 complexes per minute; so-called “P-wave asystole” occurs with only atrial impulses present (P waves)
- Rhythm: no ventricular activity seen or ≤6 complexes per minute
- PR: cannot be determined; occasionally P wave is seen, but by definition R wave must be absent
- QRS complex: no deflections seen that are consistent with a QRS complex

Clinical Manifestations
- Collapse; unresponsiveness
- Agonal gasps (early) or apnea
- No pulse or blood pressure
- Death
Common Etiologies
- End of life (death)
- Cardiac ischemia
- Acute respiratory failure/hypoxia from many causes (no oxygen, apnea, asphyxiation)
- Massive electrical shock (eg, electrocution, lightning strike)
- May represent “stunning” of the heart immediately after defibrillation (shock delivery that eliminates VF) before resumption of spontaneous rhythm

Figure 18. The “rhythm” of ventricular asystole. This patient is pulseless and unresponsive. Note the 2 QRS-like complexes at the start of this rhythm display. These complexes represent a minimum of electrical activity, probably ventricular escape beats. Note the long section in which electrical activity is completely absent. This patient is in asystole at this point.
Part 2: Recognition of Selected Nonarrest ECG Rhythms

Recognition of Supraventricular Tachyarrhythmias (SVTs)

<table>
<thead>
<tr>
<th>Sinus Tachycardia (Figure 19)</th>
</tr>
</thead>
</table>
| **Pathophysiology** | None—more a physical sign than an arrhythmia or pathologic condition
Normal impulse formation and conduction |
| **Defining Criteria and ECG Features** | **Rate:** >100 beats per minute
Rhythm: sinus
PR: usually <0.20 second
P for every QRS Complex
QRS complex: May be normal or wide if there is an underlying abnormality |
| **Clinical Manifestations** | None specific for the tachycardia
Symptoms may be present due to the cause of the tachycardia (fever, hypovolemia, etc) |
| **Common Etiologies** | Normal exercise
Hypoxemia
Fever
Hypovolemia
Adrenergic stimulation, anxiety
Hyperthyroidism
Anemia
Pain |

Figure 19. Sinus tachycardia.
Atrial Fibrillation (Figure 20) and Atrial Flutter (Figure 21)

Pathophysiology
- Atrial impulses faster than sinoatrial (SA node) impulses
- Atrial fibrillation: impulses take multiple, chaotic, random pathways through atria
- Atrial flutter: impulses take a circular course around atria, setting up flutter waves

Defining Criteria and ECG Features

<table>
<thead>
<tr>
<th></th>
<th>Atrial Fibrillation</th>
<th>Atrial Flutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>• Wide-ranging ventricular response to atrial undulations that occur between 300 and 400 per minute</td>
<td>• Atrial rate 220 to 350 beats per minute</td>
</tr>
<tr>
<td></td>
<td>• May be normal or slow if AV nodal conduction is abnormal (eg, “sick sinus syndrome”)</td>
<td>• Ventricular response is a function of AV node block or conduction of atrial impulses</td>
</tr>
<tr>
<td>Rhythm</td>
<td>• Irregular (classic “irregularly irregular”)</td>
<td>• Regular</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ventricular rhythm often regular</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Set ratio to atrial rhythm, eg, 2:1 or 4:1</td>
</tr>
<tr>
<td>P waves</td>
<td>• Chaotic atrial fibrillatory waves only</td>
<td>• No true P waves seen</td>
</tr>
<tr>
<td></td>
<td>• Creates variable baseline</td>
<td>• Flutter waves in “sawtooth” pattern is classic</td>
</tr>
<tr>
<td>PR</td>
<td>• Cannot be measured</td>
<td></td>
</tr>
<tr>
<td>QRS</td>
<td>• Remains <0.12 second unless QRS complex is distorted by fibrillation or flutter waves or by conduction defects through ventricles</td>
<td></td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>• Signs and symptoms are a function of the rate of ventricular response to atrial fibrillation waves; “atrial fibrillation with rapid ventricular response” may be characterized by dyspnea on exertion (DOE), shortness of breath (SOB), and sometimes acute pulmonary edema.</td>
<td>• Loss of “atrial kick” may lead to drop in cardiac output and decreased coronary perfusion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Irregular rhythm often perceived as “palpitations.”</td>
</tr>
</tbody>
</table>
Common Etiologies

- Can be asymptomatic.
- Acute coronary syndromes, coronary artery disease, congestive heart failure
- Disease at mitral or tricuspid valve
- Hypoxia, acute pulmonary embolism
- Drug-induced: digoxin or quinidine; β-agonists, theophylline
- Hypertension
- Hyperthyroidism

Figure 20. Atrial fibrillation.

Figure 21. Atrial flutter (sawtooth pattern).
Accessory-Mediated SVT (Figure 22); May include AV nodal reentrant tachycardia or AV reentry tachycardia.

Pathophysiology
- Reentry phenomenon: impulses recycle repeatedly in the AV node because an abnormal rhythm circuit allows a wave of depolarization to travel in a circle. Usually the depolarization travels antegrade (forward) through the abnormal pathway and then circles back retrograde through the “normal” conduction tissue.

Defining Criteria and ECG Features

Key: Regular, narrow-complex tachycardia without P waves and sudden onset or cessation

Note: To merit the diagnosis of reentry SVT, some experts require capture of the abrupt onset or cessation on a monitor strip.

- **Rate:** exceeds upper limit of sinus tachycardia at rest (>220 beats per minute), seldom <150 beats per minute, often up to 250 beats per minute
- **Rhythm:** regular
- **P waves:** seldom seen because rapid rate causes P wave to be “hidden” in preceding T waves or to be difficult to detect because the origin is low in the atrium
- **QRS complex:** normal, narrow

Clinical Manifestations
- Palpitations felt by patient at onset; becomes anxious, uncomfortable
- Low exercise tolerance with very high rates
- Symptoms of unstable tachycardia may occur

Common Etiologies
- Accessory conduction pathway in many SVT patients.
- For such otherwise healthy people, many factors can provoke the reentry SVT: caffeine, hypoxia, cigarettes, stress, anxiety, sleep deprivation, numerous medications.
- Frequency of SVT increases in unhealthy patients with coronary artery disease, chronic obstructive pulmonary disease, and congestive heart failure.
Recognition of Ventricular Tachyarrhythmias

Monomorphic VT (Figure 23)

<table>
<thead>
<tr>
<th>Pathophysiology</th>
<th>Defining Criteria per ECG</th>
</tr>
</thead>
</table>
| ● Impulse conduction is slowed around areas of ventricular injury, infarct, or ischemia.
● These areas also serve as sources of ectopic impulses (irritable foci).
● These areas of injury can cause the impulse to take a circular course, leading to the reentry phenomenon and rapid repetitive depolarizations. | ● Rate: ventricular rate >100 beats per minute; typically 120 to 250 beats per minute
● Rhythm: regular ventricular rhythm
● PR: absent (rhythm is AV dissociated)
● P waves: seldom seen but present; VT is a form of AV dissociation, a defining characteristic for wide-complex tachycardias of ventricular origin versus supraventricular tachycardias with aberrant conduction
● QRS complex: wide and bizarre, “PVC-like” complexes ≥0.12 second, with large T wave of opposite polarity from QRS
● Fusion beats: Occasional chance capture of a conducted P wave. Resulting QRS “hybrid” complex, part normal, part ventricular
● Nonsustained VT: lasts <30 seconds and does not require intervention |

Figure 22. Sinus rhythm with a reentry supraventricular tachycardia (SVT).
<table>
<thead>
<tr>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Typically symptoms of decreased cardiac output (orthostasis, hypotension, syncope, exercise limitations, etc) do develop</td>
</tr>
<tr>
<td>• Monomorphic VT can be asymptomatic despite widespread belief that sustained VT always produces symptoms</td>
</tr>
<tr>
<td>• Untreated and sustained VT will deteriorate to unstable VT, often VF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Etiologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An acute ischemic event (see Pathophysiology) with areas of “ventricular irritability” leading to PVCs</td>
</tr>
<tr>
<td>• Low ejection fraction due to chronic systolic heart failure</td>
</tr>
<tr>
<td>• PVCs that occur during relative refractory period of cardiac cycle (“R-on-T phenomenon”)</td>
</tr>
<tr>
<td>• Drug-induced, prolonged QT interval (tricyclic antidepressants, procainamide, digoxin, some long-acting antihistamines, dofetilide, and antipsychotics)</td>
</tr>
</tbody>
</table>

Figure 23. Monomorphic VT at a rate of 150 beats per minute: wide QRS complexes (arrow A) with opposite polarity T waves (arrow B).

<table>
<thead>
<tr>
<th>Polymorphic VT (Figure 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Impulse conduction is slowed around multiple areas of ventricular injury, infarct, or ischemia.</td>
</tr>
<tr>
<td>• These areas also serve as the source of ectopic impulses (irritable foci); irritable foci occur in multiple areas of the ventricles and thus are “polymorphic.”</td>
</tr>
<tr>
<td>• These areas of injury can cause impulses to take a circular course, leading to the reentry phenomenon and rapid repetitive depolarizations.</td>
</tr>
</tbody>
</table>
Defining Criteria per ECG

Key: Marked variation and inconsistency seen in QRS complexes

- **Rate:** ventricular rate >100 beats per minute; typically 120 to 250 beats per minute
- **Rhythm:** regular or irregular ventricular; no atrial activity
- **PR:** nonexistent
- **P waves:** seldom seen but present; VT is a form of AV dissociation
- **QRS complexes:** marked variation and inconsistency seen in QRS complexes

Clinical Manifestations

- Typically will rapidly deteriorate to pulseless VT or VF
- Symptoms of decreased cardiac output (orthostasis, hypotension, poor perfusion, syncope, etc) present before pulseless arrest
- Seldom sustained VT

Common Etiologies

- Acute ischemic event (see Pathophysiology) with areas of “ventricular irritability”
- PVCs that occur during relative refractory period of cardiac cycle (“R-on-T phenomenon”)
- Drug-induced prolonged QT interval (tricyclic antidepressants, procainamide, sotalol, amiodarone, ibutilide, dofetilide, some antipsychotics, digoxin, some long-acting antihistamines)
- Hereditary long QT interval syndromes

Figure 24. Polymorphic VT: QRS complexes display multiple morphologies.

<table>
<thead>
<tr>
<th>Torsades de Pointes (a Unique Subtype of Polymorphic VT) (Figure 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
</tr>
<tr>
<td>Specific pathophysiology of classic torsades:</td>
</tr>
<tr>
<td>- QT interval is abnormally long (baseline ECG). Leads to</td>
</tr>
<tr>
<td>increase in relative refractory period (“vulnerable</td>
</tr>
<tr>
<td>period”) of cardiac cycle. This increases probability</td>
</tr>
<tr>
<td>that an irritable focus (PVC) will occur on T wave (vulnerable</td>
</tr>
<tr>
<td>period or R-on-T phenomenon).</td>
</tr>
<tr>
<td>- R-on-T phenomenon often induces VT.</td>
</tr>
</tbody>
</table>

© 2012 American Heart Association
Defining Criteria per ECG

Key: QRS complexes display a “spindle-node” pattern, in which VT amplitude increases and then decreases in a regular pattern (creating the “spindle”). The initial deflection at the start of one spindle (eg, negative) will be followed by complexes of opposite (eg, positive) polarity or deflection at the start of next spindle (creating the “node”).

- **Atrial rate:** cannot be determined
- **Ventricular rate:** 150 to 250 complexes per minute
- **Rhythm:** only irregular ventricular rhythm
- **PR:** nonexistent
- **P waves:** nonexistent
- **QRS complexes:** display classic spindle-node pattern (see “Key” at left)

Clinical Manifestations

- Tends toward sudden deterioration to pulseless VT or VF.
- Symptoms of decreased cardiac output are typical (orthostasis, hypotension, syncope, signs of poor perfusion, etc).
- “Stable” torsades; sustained torsades is uncommon.

Common Etiologies

- Most commonly occurs in patients with prolonged QT interval, due to many causes:
 - Drug-induced: tricyclic antidepressants, procainamide, sotalol, amiodarone, ibutilide, dofetilide, some antipsychotics, digoxin, some long-acting antihistamines
 - Electrolyte and metabolic alterations (hypomagnesemia is the prototype)
 - Inherited forms of long QT syndrome
 - Acute ischemic events (see Pathophysiology)
Recognition of Sinus Bradycardia

Sinus Bradycardia (Figure 26)

| **Pathophysiology** | • Impulses originate at SA node at a slow rate.
• May be physiologic.
• Can be a physical sign, as in sinus tachycardia. |
|---------------------|---|
| **Defining Criteria per ECG** | **Key:** Regular P waves followed by regular QRS complexes at rate <60 beats per minute
Note: Often a physical sign rather than an abnormal rhythm
Rate: <60 beats per minute
Rhythm: regular sinus
PR: regular, 0.12 to 0.20 second
P waves: size and shape normal; every P wave is followed by a QRS complex; every QRS complex is preceded by a P wave
QRS complex: narrow; <0.12 second (often <0.11 second) in absence of intraventricular conduction defect |
| **Clinical Manifestations** | • Usually asymptomatic at rest.
• With increased activity and sinus node dysfunction, a persistent slow rate can lead to symptoms of easy fatigue, shortness of breath, dizziness or lightheadedness, syncope, hypotension, diaphoresis, pulmonary congestion, and frank pulmonary edema.
• The ECG can independently display acute ST-segment or T-wave deviation or ventricular arrhythmias. |
| **Common Etiologies** | • Can be normal for well-conditioned people
• Vasovagal event, such as vomiting, Valsalva maneuver, |
rectal stimuli, inadvertent pressure on carotid sinus (“shaver’s syncope”)
- Acute coronary syndromes that affect circulation to SA node (right coronary artery); most often inferior acute myocardial infarctions (AMIs)
- Adverse drug effects, eg, β-blockers or calcium channel blockers, digoxin, quinidine

Figure 26. Sinus bradycardia.
Recognition of Atrioventricular (AV) Block

First-Degree AV Block (Figure 27)

| Pathophysiology | • Impulse conduction is slowed (*partial block*) at AV node for a fixed interval
| | • May be a sign of another problem or a primary conduction abnormality |
| Defining Criteria per ECG | • **Rate:** First-degree AV block can be seen with rhythms with both sinus bradycardia and sinus tachycardia as well as a normal sinus mechanism
| Key: PR interval >0.20 second | • **Rhythm:** sinus, regular, both atria and ventricles
| | • **PR:** prolonged, >0.20 second but does not vary (*fixed*)
| | • **P waves:** size and shape normal; every P wave is followed by a QRS complex; every QRS complex is preceded by P wave
| | • **QRS complex:** narrow, <0.12 second in absence of intraventricular conduction defect |
| Clinical Manifestations | • Usually asymptomatic |
| Common Etiologies | • Many first-degree AV blocks are due to drugs, usually the AV nodal blockers: β-blockers, non-dihydropyridine calcium channel blockers, and digoxin
| | • Any condition that stimulates the parasympathetic nervous system (eg, vasovagal reflex)
| | • AMI that affects circulation to the AV node (right coronary artery); most often inferior AMI |

Figure 27. First-degree AV block.
Type I Second-Degree AV Block (Mobitz I–Wenckebach) (Figure 28)

| Pathophysiology | • Site of pathology: AV node.
| | • AV node blood supply comes from branches of right coronary artery (right dominant circulation).
| | • Impulse conduction is progressively slowed at AV node (causing increasing PR interval) until one sinus impulse is completely blocked and QRS complex fails to follow. |
| Defining Criteria per ECG | • **Rate:** atrial rate just slightly faster than ventricular (because of dropped conduction); usually within normal range
| Key: There is progressive lengthening of PR interval until one P wave is not followed by QRS complex (dropped beat). | • **Rhythm:** atrial complexes are regular and ventricular complexes are irregular in timing (because of dropped beats); can show regular P waves marching through irregular QRS
| | • **PR:** progressive lengthening of PR interval occurs from cycle to cycle; then one P wave is not followed by QRS complex (“dropped beat”)
| | • **P waves:** size and shape remain normal; occasional P wave not followed by QRS complex (“dropped beat”)
| | • **QRS complex:** <0.12 second most often, but a QRS “drops out” periodically |
| Clinical Manifestations—Rate-Related | **Due to bradycardia:**
| | • Most often asymptomatic
| | • **Symptoms:** chest pain, shortness of breath, decreased level of consciousness
| | • **Signs:** hypotension, shock, pulmonary congestion, congestive heart failure (CHF), angina |
| Common Etiologies | • AV nodal blocking agents: β-blockers, nondihydropyridine calcium channel blockers, digoxin
| | • Conditions that stimulate the parasympathetic nervous system
| | • Acute coronary syndrome that involves right coronary artery |

![Figure 28. Type I second-degree AV block. Note the progressive lengthening of the PR interval until one P wave (arrow) is not followed by a QRS.](image)
Type II Second-Degree AV Block (Infranodal; Mobitz II; Non-Wenckebach) (Figure 29)

| Pathophysiology | • The site of the block is most often below the AV node (infranodal) at the bundle of His (infrequent) or at bundle branches.
• Impulse conduction is normal through node, thus no first-degree block and no prior PR prolongation. |
|-----------------|--|
| Defining Criteria per ECG | • **Atrial rate**: usually 60 to 100 beats per minute
• **Ventricular rate**: by definition (because of blocked impulses) slower than atrial rate
• **Rhythm**: atrial is regular; ventricular is irregular (because of blocked impulses); ventricular is regular if there is consistent 2:1 or 3:1 block
• **PR**: constant and set; no progressive prolongation as with Type I second-degree AV block Mobitz—a distinguishing characteristic
• **P waves**: typical in size and shape; by definition some P waves will not be conducted and therefore not followed by a QRS complex
• **QRS complex**: narrow (<0.12 second) implies high block relative to AV node; wide (≥0.12 second) implies low block relative to AV node |
| Clinical Manifestations—Rate-Related | **Due to bradycardia:**
• **Symptoms**: chest pain, shortness of breath, decreased level of consciousness
• **Signs**: hypotension, shock, pulmonary congestion, CHF, AMI |
| Common Etiologies | • Acute coronary syndrome that involves branches of **left** coronary artery |
Figure 29. A, Type II (high block): regular PR-QRS intervals until 2 dropped beats occur; borderline normal QRS complexes indicate high nodal or nodal block. B, Type II (low block): regular PR-QRS intervals until dropped beats; wide QRS complexes indicate infranodal block.

Third-Degree AV Block and AV Dissociation (Figure 30)

Pathophysiology

Pearl: AV dissociation is the defining class; third-degree or complete AV block is one type of AV dissociation.

- Injury or damage to cardiac conduction system so that no impulses (complete block) pass between atria and ventricles (neither antegrade nor retrograde)
- This complete block can occur at several different anatomic areas:
 - AV node ("high," "supra-," or "junctional" nodal block)
 - Bundle of His
 - Bundle branches ("low-nodal" or "infranodal" block)

Defining Criteria per ECG

Key: Third-degree block (see Pathophysiology) causes atria and ventricles to depolarize

- Atrial rate: usually 60 to 100 beats per minute; impulses completely independent ("dissociated") from the slower ventricular rate
- Ventricular rate: depends on rate of ventricular escape beats that arise:
 - Ventricular escape rate slower than atrial rate = third-degree AV block (rate = 20 to 40 beats per minute)
 - Ventricular escape rate faster than atrial rate =
AV dissociation (rate = 40 to 55 beats per minute)
- **Rhythm**: both atrial rhythm and ventricular rhythm are regular but independent (“dissociated”)
- **PR**: by definition there is no relationship between P wave and R wave
- **P waves**: typical in size and shape
- **QRS complex**: narrow (<0.12 second) implies high block relative to AV node; wide (≥0.12 second) implies low block relative to AV node

Clinical Manifestations—Rate-Related

Due to bradycardia:
- **Symptoms**: chest pain, shortness of breath, decreased level of consciousness
- **Signs**: hypotension, shock, pulmonary congestion, CHF, AMI

Common Etiologies
- Acute coronary syndrome that involves branches of *left* coronary artery
- In particular, involves left anterior descending (LAD) artery and branches to interventricular septum (supply bundle branches)

Figure 30. Third-degree AV block: regular P waves at 50 to 55 beats per minute; regular ventricular “escape beats” at 35 to 40 beats per minute; no relationship between P waves and escape beats.
Defibrillation and Safety

Manual Defibrillation

Using a Manual Defibrillator/monitor

When using a manual defibrillator/monitor, perform a rhythm check as indicated by the ACLS Cardiac Arrest Algorithm. This can be performed by attaching the adhesive defibrillator electrode pads or placing the defibrillator paddles on the chest (with appropriate conduction surface or gel) to reduce transthoracic impedance, and using the paddle “quick look” feature.

At the time of writing of the 2010 AHA Guidelines for CPR and ECC, there were no data to suggest that one of these modalities is better than the others in reducing impedance. Because adhesive monitor/defibrillator electrode pads are as effective as paddles and gel pads or paste, and the pads can be placed before cardiac arrest to allow for monitoring and rapid administration of a shock when necessary, adhesive pads should be used routinely instead of standard paddles.

For adult defibrillation, both handheld paddles and self-adhesive pads (8 to 12 cm in diameter) perform well, although defibrillation success may be higher with electrodes 12 cm in diameter rather than with those 8 cm in diameter, whereas small electrodes (4.3 cm) may be harmful and may cause myocardial necrosis. When using handheld paddles and gel or pads, you must ensure that the paddle is in full contact with the skin. Even smaller pads have been found to be effective in VF of brief duration. Use of the smallest (pediatric) pads, however, can result in unacceptably high transthoracic impedance in larger children.

Early defibrillation is critical to survival from sudden cardiac arrest (SCA). A common initial rhythm in out-of-hospital witnessed SCA is VF, the treatment for which is defibrillation. The probability of successful defibrillation diminishes rapidly over time, and VF tends to deteriorate to asystole within 10 to 15 minutes. Therefore, whether the adhesive electrode pads or paddles are being used, you should be very careful not to delay the shock during CPR to minimize the time between last compression and shock delivery. Intervals between pausing chest compressions and shock delivery have been shown to last approximately 20 to 30 seconds, which is no longer acceptable. If CPR is in progress, chest compressions should continue until the defibrillator electrode adhesive pads are attached to the chest and the manual defibrillator is ready to analyze the rhythm.

For every minute that passes between collapse and defibrillation, survival rates from witnessed VF SCA decrease 7% to 10% if no CPR is
When bystander CPR is provided, the decrease in survival rates is more gradual and averages 3% to 4% from collapse to defibrillation. CPR can double or triple survival from witnessed SCA at most intervals to defibrillation.

When any rescuer witnesses an out-of-hospital arrest and an automated external defibrillator (AED) is immediately available onsite, the rescuer should start CPR and use the AED as soon as possible. Healthcare providers who treat cardiac arrest in hospitals and other facilities with AEDs onsite should provide immediate CPR and should use the AED/defibrillator as soon as it becomes available.

When you identify VF/pulseless VT, *immediately* deliver 1 shock, using the following energy levels:

- **Biphasic**: device-specific (first dose typically a selected energy of 120 J with a rectilinear biphasic waveform and a first dose selected energy of 120 J to 200 J with a biphasic truncated exponential waveform); if you do not know the device or the manufacturer’s recommendation regarding the specific dose shown to be effective for elimination of VF, defibrillation at the maximal dose may be considered.

- **Monophasic**: 360 J. If VF persists after the first shock, second and subsequent shocks of 360 J should be given.

- **Pediatric defibrillation**: for pediatric patients, use an initial dose of 2 to 4 J/kg. For refractory VF, it is reasonable to increase the dose to 4 J/kg. Subsequent energy levels should be at least 4 J/kg, and higher energy levels may be considered, not to exceed 10 J/kg or the adult maximum dose.

After delivering a single shock, immediately resume CPR, pushing hard and fast at a rate of at least 100 compressions per minute. Minimize interruption of CPR and allow full chest recoil after each compression.
Safety and Clearing the Patient

Clearing: You and Your Team

To ensure the safety of defibrillation, whether manual or automated, the defibrillator operator must always announce that a shock is about to be delivered and perform a visual check to make sure no one is in contact with the patient. The operator is responsible for “clearing” the patient and rescuers before each shock is delivered. Whenever you use a defibrillator, firmly state a “defibrillation clearing or warning” before each shock. The purpose of this warning is to ensure that no one has any contact with the patient and that no oxygen is flowing across the patient’s chest or openly flowing across the electrode pads. You should state the warning quickly to minimize the time from last compression to shock delivery. For example:

- “I am going to shock on three. One, two, three, shocking.”
 (Perform a visual check to make sure you have no contact with the patient, the stretcher, or other equipment.)

You do not need to use those exact words. But it is imperative that you warn others that you are about to deliver a shock and that everyone stand clear.

Make sure all personnel step away from the patient, remove their hands from the patient, and end contact with any device or object touching the patient. Any personnel in indirect contact with the patient, such as the team member holding a ventilation bag attached to an ET tube, must also end contact with the patient. The person responsible for airway support and ventilation should ensure that oxygen is not openly flowing around the electrode pads (or paddles) or across the patient’s chest.

A Final Note About Defibrillators

Most modern AEDs and manual defibrillators use biphasic waveforms. Take the time to learn to operate the defibrillator used in your workplace and its energy settings. Remember, early defibrillation in the presence of shockable rhythm increases the patient’s chance of survival. This principle holds true regardless of the type of defibrillator or waveform.
Access for Medications

Part 1: Introduction

Correct Priorities

Historically in ACLS, drugs were administered by the intravenous (IV) or endotracheal route. However, new science and consensus opinion have prioritized both access routes and drug administration. Remember, no drug given during cardiac arrest has been shown to improve survival to hospital discharge or improve neurologic function after cardiac arrest.

- High-quality CPR and early defibrillation are the top priorities during cardiac arrest.
- Drug administration is of secondary importance. Drugs can be administered while other interventions are underway and should not interrupt chest compressions.
- Unless bag-mask ventilation is ineffective, insertion of an advanced airway whether for drug administration or ventilation is of secondary importance. Some advanced airway devices can be placed while chest compressions continue. If insertion of an advanced airway requires interruption of chest compression for many seconds, the provider should weigh the need for compression against the need for an advanced airway.
- Absorption of drugs given by the endotracheal route is unpredictable, and optimal dosing is unknown. For this reason, the IO route is preferred when IV access is not available.

Intravenous Route

A peripheral IV is preferred for drug and fluid administration, unless a central line is already in place. Central line access is not needed during most resuscitation attempts. Attempts to insert a central line may interrupt CPR. In addition, CPR can cause complications during central line insertion, such as vascular laceration, hematomas, and bleeding. Insertion of a central line in a noncompressible area of a vein is a relative contraindication to fibrinolytic therapy (eg, for the patient with an ST-segment elevation myocardial infarction [STEMI] and sudden cardiac arrest).

Establishing a peripheral line should not require interruption of CPR. Drugs typically require 1 to 2 minutes to reach the central circulation when given by the peripheral IV route. Keep this in mind during CPR. The drug you give based on a rhythm check will not take effect until it is flushed into the patient and has been circulated by the blood flow generated during CPR.
If you choose the peripheral venous route, give the drug by bolus injection and follow with a 20 mL bolus of IV fluid. Briefly elevating the extremity during and after drug administration theoretically may also recruit the benefit of gravity to facilitate delivery to the central circulation, but has not been systematically studied.

Intraosseous Route

Use the IO route to deliver drugs and fluids during resuscitation if IV access is unavailable. IO access is safe and effective for fluid resuscitation, drug delivery, and blood sampling for laboratory evaluation. IO access can be established in all age groups.

Any drug or fluid that can be given by the IV route can also be given by the IO route. The IO route is preferred over the ET tube route.

IO cannulation provides access to a noncollapsible venous plexus in the bone marrow. This vascular network provides a rapid, safe, and reliable route for administration of drugs, crystalloids, colloids, and blood during resuscitation. It is often possible to achieve IO access in 30 to 60 seconds. The technique uses a rigid needle, preferably a specially designed IO or bone marrow needle. Use of an IO needle with stylet may be preferred to use of a needle without stylet because the stylet prevents obstruction of the needle with cortical bone during insertion. Butterfly needles and standard hypodermic needles can also be used. Commercially available kits can facilitate IO access in adults.

Endotracheal Route

The IV and IO routes of administration are preferred over the endotracheal route of administration during CPR because drug absorption and drug effect are much less predictable when drugs are administered by this route. When considering the use of the endotracheal route during CPR, keep these concepts in mind:

- The optimal dose of most drugs given by the endotracheal route is unknown.
- The typical dose of drugs administered by the endotracheal route is 2 to 2½ times the dose given by the IV route.
- To give drugs via the endotracheal route, dilute the dose in 5 to 10 mL of sterile water or normal saline and inject the drug directly into the ET tube. Follow with several positive-pressure breaths.
- You can give the following drugs by the endotracheal route during cardiac arrest: vasopressin, epinephrine, and lidocaine.
Using Peripheral Veins for IV Access

The most common sites for IV access are in the hands and arms. Favored sites are the dorsum of the hands, the wrists, and the antecubital fossae. Ideally, only the antecubital veins should be used for drug administration during CPR.

Anatomy: Upper Extremities (Figure 31)
Starting at the radial side of the wrist, a thick vein, the superficial radial vein, runs laterally up to the antecubital fossa and joins the median cephalic vein to form the cephalic vein. Superficial veins on the ulnar aspect of the forearm run to the elbow and join the median basilic vein to form the basilic vein. The cephalic vein of the forearm bifurcates into a Y in the antecubital fossa, becoming the median cephalic (laterally) and the median basilic (medially).

Technique: Antecubital Venipuncture
The largest surface veins of the arm are in the antecubital fossa. Select these veins first for access if the patient is in circulatory collapse or cardiac arrest (Figure 31). Select a point between the junctions of 2 antecubital veins. The vein is more stable here, and venipuncture is more often successful.

If peripheral access is impossible, consider central access via the femoral veins since chest compressions and other resuscitation interventions should not be interrupted, and potential vascular injuries can be better controlled at this site.

If upper extremity access is impossible and a central line is not an option, consider a peripheral leg vein.

Figure 31. Antecubital venipuncture. A, Scene perspective from a distance. B, Close-up view of antecubital area: anatomy of veins of upper extremity.
General IV Principles

Once you gain vascular access, follow these important principles for administering IV therapy:

- After a cardiac arrest patient becomes stable, remove the cannula inserted emergently and replace it with a new one under sterile conditions. Strict aseptic technique is compromised in most emergency venipunctures, where speed is essential. This compromise is particularly likely when emergency vascular access is established outside the hospital, because personnel and equipment are limited.
- IV solutions are usually packaged in nonbreakable plastic bottles or bags. Squeeze plastic bags before use to detect punctures that may lead to contamination of the contents.
- Avoid adding drugs that may be adsorbed by the plastic bag or tubing (eg, IV nitroglycerin). If you must administer these drugs without specialty infusion systems, allow for drug adsorption when you titrate the drug administration rate.
- Ideally set the rate of infusion to at least 10 mL/h to keep the IV line open.
- Saline lock catheter systems are particularly useful for patients who have spontaneous circulation and require drug injections but not IV volume infusion.
- Most contemporary systems use needleless injection sites. These systems permit drug and flush infusions without the use of needles and the associated risk of needle sticks.
- Avoid letting the arm with the IV access hang off the bed. Place the arm at the level of the heart, or slightly above the heart, to facilitate delivery of fluids and medications to the central circulation.
- During cardiac arrest follow all peripherally administered drugs with a bolus of at least 20 mL of IV flush solution.
This flush will facilitate delivery to the central circulation. Elevate the extremity for 10 to 20 seconds to facilitate drug delivery to the central circulation.

- Be aware of complications common to all IV techniques. Local complications include hematomas, cellulitis, thrombosis, infiltration, and phlebitis. Systemic complications include sepsis, pulmonary thromboembolism, air embolism, and catheter fragment embolism.
Part 3: Intraosseous Access

Introduction
When venous access cannot be rapidly achieved, intraosseous (IO) access can serve as a rapid, safe, and reliable route for administration of drugs, crystalloids, colloids, and blood.

Needles
The technique uses a rigid needle, preferably a specially designed IO or Jamshidi-type bone marrow needle. In the past the higher bone density in older children and adults made it difficult for smaller IO needles to penetrate the bone without bending. With the development of IO cannula systems for adults, IO access is now easier to obtain in older children and adults.

Sites
Many sites are appropriate for IO infusion:
- In older children and adults, these general sites include: the humeral head, proximal tibia, medial malleolus, sternum, distal radius, distal femur, and anterior-superior iliac spine.

Indications and Administration
Resuscitation drugs, fluids, and blood products can be administered safely by the IO route. Continuous catecholamine infusions can also be provided by this route.

The onset of action and drug levels after IO infusion during CPR are comparable to those for vascular routes of administration, including central venous access. When providing drugs and fluids by the IO route, remember the following:

- Flush all IO medications with normal saline to facilitate delivery into the central circulation.
- Administer viscous drugs and solutions and fluid for rapid volume resuscitation under pressure using an infusion pump, pressure bag, or forceful manual pressure to overcome the resistance of the emissary veins.
- Some have expressed concern that high-pressure infusion of blood might induce hemolysis, but animal studies have failed to document this problem.
Contraindications Absolute contraindications to IO access are as follows:

- Fractures and crush injuries near or proximal to the access site
- Conditions in which the bone is fragile, such as osteogenesis imperfecta
- Previous attempts to establish access in the same bone
- Presence of infection of the overlying tissues

Complications Complications of IO infusion include tibial fracture, lower extremity compartment syndrome or severe extravasation of drugs, and osteomyelitis. But <1% of patients have complications after IO infusion. Careful technique helps to prevent complications.

Equipment Needed The following equipment is needed to establish IO access:

- Gloves
- Skin disinfectant
- IO needle (16- or 18-gauge) or bone marrow needle
- Tape
- Syringe
- Isotonic crystalloid fluid
- Intravenous tubing

Procedure The steps to establish IO using the tibial tuberosity as an example of an access site are described below. Commercial kits are currently available, and providers should follow the manufacturer’s steps provided with the kit.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | - Always use universal precautions when attempting vascular access. Disinfect the overlying skin and surrounding area with an appropriate agent.
- Identify the tibial tuberosity just below the knee joint. The insertion site is the flat part of the tibia, 1 or 2 finger widths below and medial to this bony prominence. **Figure 32** shows some of the sites for IO access. |
| 2 | - The stylet should remain in place during insertion to prevent the needle from becoming clogged with bone or tissue.
- Stabilize the leg to facilitate needle insertion. *Do not place your hand behind the leg.* |
3. Insert the needle so that it is perpendicular to the tibia. (When placing an IO needle in other locations, aim slightly away from the nearest joint space to reduce the risk of injury to the epiphysis or joint but keep the needle as perpendicular to the bone as possible to avoid bending.)

TWIST, DO NOT PUSH, THE NEEDLE.

- Use a twisting motion with gentle but firm pressure. Some IO needles have threads. These threads must be turned clockwise and screwed into the bone.

4. Continue inserting the needle through the cortical bone until there is a sudden release of resistance. (This release occurs as the needle enters the marrow space.) If the needle is placed correctly, it will stand easily without support.

Figure 32A.

Figure 32B.

Figure 32. A, Locations for IO insertion in the distal femur, proximal tibia and medial malleolus. **B**, Location for IO insertion in the anterior-superior iliac spine.
| 5 | • Remove the stylet and attach a syringe.
• Aspiration of bone marrow contents and blood in the hub of the needle confirms appropriate placement. You may send this blood to the lab for study. (Note: Blood or bone marrow may not be aspirated in every case.)
• Infuse a small volume of saline and observe for swelling at the insertion site. Also check the extremity behind the insertion site in case the needle has penetrated into and through the posterior cortical bone. Fluid should easily infuse with saline injection from the syringe with no evidence of swelling at the site.
• If the test injection is unsuccessful (ie, you observe infiltration/swelling at or near the insertion site), remove the needle and attempt the procedure on another bone. If the cortex of the bone is penetrated, placing another needle in the same extremity will permit fluids and drugs to escape from the original hole and infiltrate the soft tissues, potentially causing injury. |
| 6 | • There are a number of methods to stabilize the needle. Place tape over the flange of the needle to provide support. Position gauze padding on both sides of the needle for additional support. |
| 7 | • When connecting IV tubing, tape it to the skin to avoid displacing the needle by placing tension on the tubing. |
| 8 | • Volume resuscitation can be delivered via a stopcock attached to extension tubing or by infusion of fluid under pressure. When using a pressurized fluid bag, take care to avoid air embolism.
Other methods include the following:
• Use a syringe bolus via a medication port in the IV tubing (3-way stopcock not needed).
• Attach a saline lock to the IO cannula and then provide syringe boluses through the lock. |
| 9 | • Any medication that can be administered by the IV route can be given by the IO route, including vasoactive drug infusions (eg, epinephrine drip).
• All medications should be followed with a saline flush. |

Follow-up
Follow-up is important after you establish IO access. Use these guidelines:
• Check the site frequently for signs of swelling.
• Check the site often for needle displacement. Delivery of fluids or drugs through a displaced needle may cause severe complications (eg, tissue necrosis or compartment syndrome).
• Replace the IO access with vascular access as soon as reasonable. IO needles are intended for short-term use, generally <24 hours. Replacement with long-term vascular access is usually done in the intensive care unit.
Patients with inferior or right ventricular (RV) infarction often present with excess parasympathetic tone. Inappropriate parasympathetic discharge can cause symptomatic bradycardia and hypotension. If hypotension is present, it is usually due to a combination of hypovolemia (decreased left ventricular [LV] filling pressure) and bradycardia.

- Give a careful fluid challenge with normal saline (250 to 500 mL based on clinical assessment).
- Repeat fluid administration (typically up to 1 to 2 L) if there is improvement and no symptoms or signs of heart failure or volume overload.
- Reassess the patient before each fluid administration.
- For patients with RV infarct and hypotension, volume administration may be lifesaving.

When hypotension is present, a slow heart rate is inappropriate. The heart rate should be faster in the presence of low blood pressure. The fluid bolus increases RV filling pressures, which cause an increase in the strength of RV contractions (Starling mechanism), blood flow through the lungs, and ultimately LV filling pressure and cardiac output.
AV Block With Inferior MI

Acute inferior wall myocardial infarction (usually a right coronary artery event) may result in symptomatic second-degree or third-degree AV block with a junctional, narrow-complex escape rhythm. However, if the patient remains asymptomatic and hemodynamically stable, transcutaneous pacing (TCP) and a transvenous pacemaker are not indicated. Monitor the patient and prepare for transcutaneous pacing if high-degree block develops and the patient becomes symptomatic or unstable before expert cardiology evaluation.

- AV block frequently develops from excess vagal tone and atrioventricular nodal ischemia. The patient may be stable if junctional pacemaker cells can function and maintain an adequate ventricular rate. This rhythm usually has a narrow-complex QRS and a ventricular rate of 40 to 60 beats per minute. Unless a large amount of myocardium is nonfunctional or comorbid conditions exist, the patient is often stable.
- If the bradycardia is symptomatic, follow the Bradycardia Algorithm.
- Prepare for TCP.
- Use atropine to increase heart rate and blood pressure if the patient becomes symptomatic. The initial recommended atropine dose is 0.5 mg IV bolus. Repeat every 3 to 4 minutes, not exceeding the maximum dose of 3 mg. Use only the dose necessary to stabilize the patient. Excess atropine may increase ischemia by excessively increasing heart rate and contractility—major determinants of myocardial oxygen consumption.
- If there is no response to atropine in an unstable patient, initiate TCP or infusion of chronotropic drug such as epinephrine (2 to 10 mcg/min) or dopamine (2 to 10 mcg/kg per minute).
- If the patient does not respond to drugs or TCP, start transvenous pacing.

Evaluation of AV block with AMI can be difficult. Obtain immediate expert consultation for evaluation and recommendation (eg, transvenous temporary pacemaker).
Fibrinolytic Checklist for STEMI*

Step 1
Has patient experienced chest discomfort for greater than 15 minutes and less than 12 hours?

YES

NO

Does ECG show STEMI or new or presumably new LBBB?

YES

NO

STOP

Step 2
Are there contraindications to fibrinolysis? If ANY one of the following is checked YES, fibrinolysis MAY be contraindicated.

Systolic BP >180 to 200 mm Hg or diastolic BP >100 to 110 mm Hg
Right vs left arm systolic BP difference >15 mm Hg
History of structural central nervous system disease
Significant closed head/facial trauma within the previous 3 months
Stroke >3 hours or <3 months
Recent (within 2-4 weeks) major trauma, surgery (including laser eye surgery), GI/GU bleed
Any history of intracranial hemorrhage
Bleeding, clotting problem, or blood thinners
Pregnant female
Serious systemic disease (eg, advanced cancer, severe liver or kidney disease)

YES

NO

Step 3
Is patient at high risk? If ANY one of the following is checked YES, consider transfer to PCI facility.

Heart rate ≥100/min AND systolic BP <100 mm Hg
Pulmonary edema (rales)
Signs of shock (cool, clammy)
Contraindications to fibrinolytic therapy
Required CPR

YES

NO

YES

NO

YES

NO

YES

NO

*Contraindications for fibrinolytic use in STEMI are viewed as advisory for clinical decision making and may not be all-inclusive or definitive. These contraindications are consistent with the 2004 ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction.

†Consider transport to primary PCI facility as destination hospital.
How Often Will CPR, Defibrillation, and ACLS Succeed?

Cardiac arrest occurs both in and out of the hospital. In the US and Canada, 350,000 people/year (approximately half of them in-hospital) suffer a cardiac arrest and undergo a resuscitation attempt. The estimated incidence of EMS-treated out-of-hospital cardiac arrest in the US is about 60% and the estimated incidence of in-hospital cardiac arrest is 3 to 6/1000 admissions. Cardiac arrest continues to be an all-too-common cause of premature death, and small incremental improvements in survival can translate into thousands of lives saved every year.

Many public health experts consider CPR training to be the most successful public health initiative of modern times. Millions of people have prepared themselves to take action to save the life of a fellow human being. But despite our best efforts, in most locations half or more of out-of-hospital resuscitation attempts do not succeed. CPR at home or in public results in return of spontaneous circulation (ROSC)—ie, even temporary return of a perfusing rhythm—only about 50% of the time.

Tragically even when ROSC occurs, few of VF cardiac arrest patients admitted to the emergency department and hospital survive and go home. This means that most CPR attempts will be “unsuccessful” in terms of neurologically intact survival to hospital discharge. In addition, mortality for in-hospital arrest is about 80% for adults. We must consider and plan for the emotional reactions from rescuers and witnesses to any resuscitation attempt. This is particularly true when their efforts appear to have “failed.”

Successful resuscitation after cardiac arrest requires an integrated set of coordinated actions represented by the links in the AHA Chain of Survival (Figure 33). The links include the following:

- Immediate recognition of cardiac arrest and activation of the emergency response system
- Early CPR with an emphasis on chest compressions
- Rapid defibrillation
- Effective advanced life support
- Integrated post–cardiac arrest care

Emergency systems that can effectively implement these links can achieve witnessed VF cardiac arrest survival to discharge of almost 50%. In most emergency systems, however, survival is lower, indicating that there is an opportunity for improvement by carefully
examining the links and strengthening those that are weak. The individual links are interdependent, and the success of each link is dependent on the effectiveness of those that precede it.

Figure 33. Adult Chain of Survival.

Take Pride in Your Skills as an ACLS Provider

You should be proud that you are learning to become an ACLS provider. Now you can be confident that you will be better prepared to do the right thing when your professional skills are needed. Of course these emergencies can have negative outcomes. You and the other emergency personnel who arrive to help in the resuscitation may not succeed in restoring life. Some people have a cardiac arrest simply because they have reached the end of their life. Your success will not be measured by whether a cardiac arrest patient lives or dies, but rather by the fact that you tried and worked well together as a team. Simply by taking action, making an effort, and trying to help, you will be judged a success.

Stress Reactions After Resuscitation Attempts

A cardiac arrest is a dramatic and emotional event, especially if the patient is a friend or loved one. The emergency may involve disagreeable physical details, such as bleeding, vomiting, or poor hygiene. The emergency can produce strong emotional reactions in physicians, nurses, bystanders, lay rescuers, and EMS professionals. Failed attempts at resuscitation can impose even more stress on rescuers. This stress can result in a variety of emotional reactions and physical symptoms that may last long after the original emergency.

It is common for a person to experience emotional “aftershocks” following an unpleasant event. Usually such stress reactions occur immediately or within the first few hours after the event. Sometimes the emotional response occurs later. These reactions are frequent and normal. There is nothing wrong with you or with someone who has such reactions after an event.

Psychologists working with professional emergency personnel have learned that rescuers may experience grief, anxiety, anger, and guilt. Typical physical reactions include difficulty
sleeping, fatigue, irritability, changes in eating habits, and confusion. Many people say they are unable to stop thinking about the event. Remember that these reactions are common and normal. They do not mean that you are “disturbed” or “weak.” Strong reactions simply indicate that this particular event had a powerful impact on you. With the understanding and support of friends and loved ones, the stress reactions usually pass.

<table>
<thead>
<tr>
<th>Techniques to Reduce Stress in Rescuers and Witnesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychologists tell us that one of the most successful ways to reduce stress after a rescue effort is simple: talk about it. Sit down with other people who witnessed the event and talk it over. EMS personnel who respond to calls from lay rescuer defibrillation sites are encouraged to offer emotional support to lay rescuers and bystanders. More formal discussions, called critical event debriefings, should include not only the lay rescuers but also the professional responders.</td>
</tr>
</tbody>
</table>

In these discussions, you will be encouraged to describe what happened. Do not be afraid of “reliving” the event. It is natural and healthy to talk about the event. Describe what went through your mind during the rescue effort. Describe how it made you feel at the time. Describe how you feel now. Be patient with yourself. Understand that many reactions will diminish within a few days. Sharing your thoughts and feelings with your companions at work, fellow rescuers, EMS personnel, or friends will help reduce stress reactions and help you recover.

Other sources of psychological and emotional support are local clergy, police chaplains, fire service chaplains, and hospital and emergency department social workers. Your course instructor may be able to tell you what plans are established for critical event debriefings in your professional setting.

<table>
<thead>
<tr>
<th>Psychological Barriers to Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Anxiety</td>
</tr>
</tbody>
</table>

The ACLS Provider Course helps prepare you to respond appropriately to a future emergency. ACLS providers have expressed some common concerns about responding to sudden cardiac emergencies: Will I be able to take action? Will I remember the steps of the ACLS approach? Will I remember how to perform the skills of CPR, defibrillation, and intubation and the details of drug doses and the steps in the algorithms? Will I really have what it takes to respond to a true emergency? Any emergency involving a patient you have grown close to, a friend or a family member, will produce a strong emotional reaction.
Disagreeable Aspects of CPR

What about the unpleasant and disagreeable aspects of performing CPR in either the in-hospital or out-of-hospital setting? Will you really be able to perform mouth-to-mouth rescue breathing on a stranger? What if the patient is bleeding from facial injuries? Would this not pose a risk of disease for a rescuer without a CPR barrier device? CPR and defibrillation require that the rescuer remove clothing from the patient’s chest. You cannot attach defibrillation electrodes unless the pads are placed directly on the skin. The rescuer must open the patient’s shirt or blouse and remove the undergarments. Common courtesy and modesty may cause some people to hesitate before removing the clothing of strangers, especially in front of many other people in a public location.

Everyone is familiar with the concept of defibrillation shocks as shown in television shows and movies. These shocks appear painful. Can you overcome your natural tendency not to hurt others, even in an emergency when your actions could be lifesaving? Often friends and relatives will be at the scene of an emergency. If you respond and take action, these people will look to you to perform quickly, effectively, and confidently.

These psychological barriers can hinder a quick emergency response, especially in settings where such events are rare. There are no easy solutions to help overcome these psychological barriers. Your instructor will encourage you to anticipate many of the scenes described above. The case scenarios will include role-playing and rehearsals. Think through how you would respond when confronted with such a circumstance. Mental practice, even without hands-on practice, may help improve your future performance. The best preparation, however, is frequent practice with manikins in realistic scenarios and situations.

Leaders of all courses that follow the AHA guidelines are aware of the mental and emotional challenge of rescue efforts. You will have support if you ever participate in a resuscitation attempt. You may not know for several days whether the patient lives or dies. If the person you try to resuscitate does not live, take comfort from knowing that in taking action you did your best.
The AHA has supported community CPR training for more than 3 decades. Citizen CPR responders have helped save thousands of lives. The AHA believes that training in the use of CPR and AEDs will dramatically increase the number of survivors of cardiac arrest.

Studies of lay rescuer AED programs in airports and casinos and of first-responder programs with police officers have shown survival rates of 41% to 74% from out-of-hospital witnessed VF SCA when immediate bystander CPR is provided and defibrillation occurred within 3 to 5 minutes of collapse. Other studies have demonstrated decreased time intervals from collapse to delivery of the first shock when AEDs were used during adult out-of-hospital cardiac arrest. However, if no decrease in time to defibrillation is achieved, then high survival rates are not observed.

Anyone can perform emergency CPR without fear of legal action.

Chest compressions and rescue breathing require direct physical contact between rescuer and patient. Often these 2 people are strangers. Too often the arrest patient dies. In the United States, people may take legal action when they think that one person has harmed another, even unintentionally. Despite this legal environment, CPR remains widely used and remarkably free of legal issues and lawsuits. Although attorneys have included rescuers who performed CPR in lawsuits, no “Good Samaritan” has ever been found guilty of doing harm while performing CPR.

All 50 states have Good Samaritan laws that grant immunity to any volunteer or lay rescuer who attempts CPR in an honest, “good faith” effort to save a life. A person is considered a Good Samaritan if

- The person is genuinely trying to help
- The help is reasonable (you cannot engage in gross misconduct, ie, actions that a reasonable person with your training would never do)
- The rescue effort is voluntary and not part of the person’s job requirements

Most Good Samaritan laws protect laypersons who perform CPR even if they have had no formal training. The purpose of this protection is to encourage broad awareness of resuscitative techniques and to remove a barrier to involving more people. Unless you are expected to perform CPR as part of your job responsibilities, you are under no *legal* obligation to attempt CPR for a patient of cardiac arrest. Failure to attempt CPR when there is no danger to the rescuer and the rescuer has the ability is not a
Principle of Futility

If the purpose of medical treatment cannot be achieved, it is considered futile. The key determinants of medical futility are length and quality of life. An intervention that cannot establish any increase in length or quality of life is futile. An objective criterion for medical futility was defined in 1990 for interventions and drug therapy as imparting a <1% chance of survival. Although this criterion may be controversial, it remains a basis for current futility research.

Patients or families may ask physicians to provide care that is inappropriate. However, physicians have no obligation to provide such care when there is scientific and social consensus that the treatment is ineffective. An obvious example of an inappropriate or futile intervention is CPR for patients with signs of irreversible death. Other healthcare providers also have no obligation to provide CPR or ACLS if no benefit can be expected (ie, CPR would not restore effective circulation) and/or in the presence of advance directives, including do not attempt resuscitation (DNAR) orders or living wills. In the absence of these clinical circumstances and personal desires, healthcare providers should attempt resuscitation.

A careful balance of the patient’s prognosis for both length and quality of life will determine whether CPR is appropriate. CPR is inappropriate when survival is not expected.

When the likelihood of survival is borderline, or when the likelihood of morbidity and burden to the patient is relatively high, rescuers should support the patient’s desires. If the patient’s desires are unknown, healthcare providers may follow the preferences of the legally authorized surrogate decision maker. Noninitiation of resuscitation and discontinuation of life-sustaining treatment during or after resuscitation are ethically equivalent. When the patient’s prognosis is uncertain, consider a trial of treatment while gathering more information to determine the likelihood of survival and the expected clinical course.

Terminating Resuscitative Efforts

The decision to stop resuscitative efforts rests with the treating physician in the hospital. The physician bases this decision on many factors, including time to CPR, time to defibrillation, comorbid disease, prearrest state, and initial arrest rhythm. None of these factors alone or in combination is clearly predictive of outcome. The most important factor associated with poor outcome in adults with normothermic cardiac arrest is the duration of resuscitative efforts. The chance of discharge from the
hospital alive and neurologically intact diminishes as resuscitation time increases. The responsible clinician should stop the resuscitation when he or she determines with a high degree of certainty that the patient will not respond to further ACLS efforts.

In the absence of mitigating factors prolonged resuscitative efforts are unlikely to be successful. If ROSC of any duration occurs, it may be appropriate to extend resuscitative efforts. It is important to consider the circumstances of the cardiac arrest when deciding whether to continue resuscitative efforts. Resuscitation efforts should be prolonged beyond what would be appropriate for prolonged asystole in the following conditions:

- The patient is young
- Presence of toxins or electrolytes abnormalities
- Profound hypothermia
- Victims of cold water submersion
- Therapeutic or illicit drug overdose
- Suicide attempt
- Nearby family member or loved ones expressing opposition to stopping efforts

Delayed or token efforts such as so-called “slow codes” (knowingly providing ineffective resuscitative efforts) are inappropriate. This practice compromises the ethical integrity of healthcare providers, uses deception to create a false impression, and may undermine the provider-patient relationship. The practice of “pseudoresuscitation” was self-reported by paramedics to occur in 27% of cardiac arrests in a community where a termination-of-resuscitation protocol was not in place.

When Not to Start CPR

Few criteria can accurately predict the futility of CPR. In light of this uncertainty, all patients in cardiac arrest should receive resuscitation unless

- The patient has a valid DNAR order.
- The patient has signs of irreversible death (eg, rigor mortis, decapitation, decomposition, or dependent lividity).
- No physiologic benefit can be expected because vital functions have deteriorated despite maximal therapy (eg, progressive septic or cardiogenic shock).

Withholding vs Withdrawing CPR

BLS training urges the first lay responder at a cardiac arrest to begin CPR. Healthcare providers are expected to provide BLS and ACLS as part of their duty to respond. There are a few exceptions to this rule:
• A person lies dead with obvious clinical signs of irreversible death (eg, rigor mortis, dependent lividity, decapitation, or decomposition).
• Attempts to perform CPR would place the rescuer at risk of physical injury.
• The patient or surrogate has indicated that resuscitation is not desired with an advance directive (DNAR order).
• No physiologic benefit can be expected because vital functions have deteriorated despite maximal therapy (eg, progressive sepsis or cardiogenic shock).

No rescuer should make a judgment about the present or future quality of life of a patient of cardiac arrest on the basis of current (ie, during the attempted resuscitation) or anticipated neurologic status. Such “snap” judgments are often inaccurate. Conditions such as irreversible brain damage or brain death cannot be reliably assessed or predicted during an emergency.

Out-of-hospital DNAR protocols must be clear to all involved (eg, physicians, patients, family members, loved ones, and out-of-hospital healthcare providers). Advance directives can take many forms (eg, written bedside orders from physicians, wallet identification cards, and identification bracelets).

The ideal EMS DNAR form is portable in case the patient is transferred. In addition to including out-of-hospital DNAR orders, the form should provide direction to EMS about initiating or continuing life-sustaining interventions for the patient who is not pulseless and apneic.

Withdrawal of Life Support

Withdrawal of life support is an emotionally complex decision for family and staff. Withholding and withdrawing life support are ethically similar. The decision to withdraw life support is justifiable when it is determined that the patient is dead, if the physician and patient or surrogate agree that treatment goals cannot be met, or the burden to the patient of continued treatment would exceed any benefits.

Patients who are unconscious or unresponsive after cardiac arrest should be directed to an inpatient critical-care facility with a comprehensive care plan that includes acute cardiovascular interventions, use of therapeutic hypothermia, standardized medical goal-directed therapies, and advanced neurological monitoring and care. Neurological prognosis may be difficult to determine during the first 72 hours, even for patients who are not undergoing therapeutic hypothermia. This timeframe for prognostication is likely to be extended in patients being cooled. Many initially comatose survivors of cardiac arrest have the potential for full recovery such that they are able to lead normal lives. Between 20% and 50% or more of survivors of out-of-
hospital cardiac arrest who are comatose on arrival at the hospital may have good 1-year neurological outcome. Therefore it is important to place patients in a hospital critical-care unit where expert care and neurological evaluation can be performed and where appropriate testing to aid prognosis is available and performed in a timely manner.

The following 3 factors are associated with poor outcome:

- Absence of pupillary response to light on the third day
- Absence of motor response to pain on the third day
- Bilateral absence of cortical response to median somatosensory evoked potentials when used in normothermic patients who are comatose for at least 72 hours after the cardiac arrest and resuscitation

Withdrawal of life support is ethically permissible under these circumstances.

Patients in the end stage of an incurable disease, whether responsive or unresponsive, should receive care that ensures their comfort and dignity. The goal of such care is to minimize the suffering associated with pain, dyspnea, delirium, convulsions, and other terminal complications. It is ethically acceptable to gradually increase the dose of narcotics and sedatives to relieve pain and other symptoms, even to levels that might shorten the patient’s life. Nursing and comfort care (eg, oral hygiene, skin care, patient positioning, and measures to relieve pain and suffering) should be continued.

At the time of writing the 2010 AHA Guidelines for CPR and ECC there was insufficient evidence about clinical neurologic signs, electrophysiologic studies, biomarkers, or imaging modalities to describe an approach to prognostication in the neonatal or pediatric patient after cardiac arrest. In the absence of prognostication guidelines, the decision to withdraw life-sustaining therapies rests with the treating physician and may vary considerably across physicians and institutions. Further research in this area is needed.
Advance Directives, Living Wills, and Patient Self-Determination

An advance directive is any expression of a person’s thoughts, wishes, or preferences for his or her end-of-life care. Advance directives can be based on conversations, written directives, living wills, or durable powers of attorney for health care. The legal validity of various forms of advance directives varies from jurisdiction to jurisdiction. Courts consider written advance directives to be more trustworthy than recollections of conversations.

A living will provides written direction to physicians about medical care the patient would approve if he or she becomes terminally ill and unable to make decisions. A living will constitutes clear evidence of the patient’s wishes and can be legally enforced in most areas.

Patients should periodically reevaluate their living wills and advance directives. Desires and medical conditions may change over time. In the United States, the Patient Self-Determination Act of 1991 requires healthcare institutions and managed-care organizations to ask if patients have advance directives. Healthcare institutions are required to facilitate the completion of advance directives if patients request them.

Out-of-Hospital DNAR Orders

In many settings, “Allow Natural Death” (AND) is becoming a preferred term to replace DNAR, to emphasize that the order is to allow natural consequences of a disease or injury, and to emphasize ongoing end-of-life care.

Many patients for whom EMS is called because of cardiac arrest are chronically ill, have a terminal illness, or have a written advance directive (DNAR order). Countries, individual states in the United States, and individual jurisdictions worldwide have different laws for out-of-hospital DNAR orders and advance directives. Even if a patient has a DNAR order, it may be difficult to determine whether to start resuscitation. It is especially difficult if family members have differing opinions. You should initiate CPR and ACLS if you have reason to believe that:

- There is reasonable doubt about the validity of a DNAR order or advance directive.
- The patient may have changed his or her mind.
- The best interests of the patient are in question.

Sometimes within a few minutes of initiation of CPR relatives or other medical personnel arrive and confirm that the patient had clearly expressed a wish that resuscitation not be attempted. CPR or other life support measures may be discontinued, with approval of medical direction, when further information becomes available.

Some EMS systems in the United States have extended the
DNAR protocol to include verbal requests from family members as grounds to withhold therapy from cardiac arrest patients with a history of a terminal illness and under the care of a physician. The number of patients for whom resuscitation was withheld doubled after implementation of this law from 45 to 99 patients a year. This is an important step in expanding the clinical decision rule pertaining to when to start resuscitation in out-of-hospital cardiac arrest.

When you cannot obtain clear information about the patient’s wishes, you should initiate resuscitative measures.

EMS No-CPR Programs

In the United States, a number of states have adopted “no-CPR” programs. These programs allow patients and family members to call EMS for emergency care, support, and treatment for end-of-life distress (ie, shortness of breath, bleeding, or uncontrolled pain). Patients do not have to fear unwanted resuscitative efforts.

In a no-CPR program the patient, who usually has a terminal illness, signs a document requesting “no heroics” if there is a loss of pulse or if breathing stops. In some states, the patient must wear a no-CPR identification bracelet. In an emergency the bracelet or other documentation signals rescuers that CPR efforts, including use of an AED, are not recommended.

If an ACLS provider arrives at the side of a person in apparent cardiac arrest (unresponsive, no pulse, no breathing) and sees that the person is wearing a no-CPR bracelet (or has some other indication of no-CPR status), the provider should respect the person’s wishes. Report the problem as a “collapsed, unresponsive person wearing a no-CPR bracelet.” State that you think CPR should not be performed.

Check with your state or ask your instructor to see what the law is in your jurisdiction regarding “no-CPR orders” in the out-of-hospital setting.

Transport

If an EMS system does not allow nonphysicians to pronounce death and stop all resuscitative efforts, personnel may be forced to transport a deceased patient of cardiac arrest to the hospital. Such an action is unethical. If carefully executed BLS and ACLS treatment protocols fail in the out-of-hospital setting, then the same treatment will not succeed in the emergency department. A number of studies have consistently shown that <1% of patients transported with continuing CPR survive to hospital discharge.

Many EMS systems authorize the termination of a resuscitation attempt in the out-of-hospital setting. Three criteria must be
Defibrillators, including many AEDs, are restricted medical devices. In the United States, most states have legislation that requires a physician to authorize the use of restricted medical devices. Lay rescuer CPR and defibrillation programs that make AEDs available to lay rescuers (and in some cases EMS providers) may be required to have a medical authority or a healthcare provider who oversees the purchase of AEDs, treatment protocols, training, and contact with EMS providers. In a sense, the medical authority prescribes the AED for use by the lay responder and therefore complies with medical regulations.

In the United States, malpractice accusations and product liability lawsuits increase every year. In the past, fear of malpractice suits hindered innovative programs to bring early CPR and early defibrillation into every community, but such fears have proven unfounded.

To solve this problem of fear of litigation, all states have changed existing laws and regulations to provide limited immunity for lay rescuers who use AEDs in the course of attempting resuscitation: the “Good Samaritan Law.” Many states have amended Good Samaritan laws to include the use of AEDs by lay rescuers. This means that the legal system will consider lay rescuers to be Good Samaritans when they attempt CPR and defibrillation for someone in cardiac arrest. As a Good Samaritan, you cannot be successfully sued for any harm or damage that occurs during the rescue effort (except in cases of gross negligence).

The AHA published a statement detailing recommended legislation to promote lay rescuer CPR and AED programs and to assist legislators and policymakers in removing impediments to these programs (http://circ.ahajournals.org/cgi/reprint/CIRCULATIONAHA.106.172289v1).

Lay rescuer CPR and AED programs should implement processes of continuous quality improvement, including evaluation of the following:
• Performance of the emergency response plan, including accurate time intervals for key interventions (such as collapse to shock or no shock advisory to initiation of CPR) and patient outcome
• Responder performance
• AED function
• Battery status and function
• Electrode pad function and readiness, including expiration date
Part 3: Providing Emotional Support for the Family

Notifying Survivors of the Death of a Loved One

Despite our best efforts, most resuscitation attempts fail. Notifying the family of the death of a loved one is an important aspect of resuscitation. It should be done compassionately, with sensitivity to the cultural and religious beliefs and practices of the family.

Family members have often been excluded from the resuscitation of a loved one. Surveys suggest that healthcare providers hold a range of opinions concerning the presence of family members during a resuscitation attempt. Several commentaries have expressed concern that family members may interfere with procedures or faint. Exposure of the institution and providers to legal liability is another concern.

But several surveys conducted before resuscitative efforts were observed showed that most family members wished to be present during a resuscitation attempt. Family members have reported that being at a loved one’s side and saying goodbye during their final moments of life were comforting. In addition being present during the resuscitation attempt helped them adjust to the death of their loved one, and most indicated they would attend again. Several retrospective reports note positive reactions from family members, many of whom said that they felt a sense of having helped their loved one and of easing their own grieving process. Most parents wanted to be given the option to decide whether to be present at the resuscitation of a child.

Given the absence of data suggesting that family presence is harmful, and in light of data suggesting that it may be helpful, it seems reasonable to offer selected relatives the option to be present during a resuscitation attempt. This recommendation assumes that the patient, if an adult, has not previously raised an objection. Parents seldom ask if they can be present unless encouraged to do so by healthcare providers.

Resuscitation team members should be sensitive to the presence of family members. It is helpful to have one team member available to answer questions from the family, clarify information, and otherwise offer comfort.

Organ and Tissue Donation

Most communities do not optimize the retrieval of organ and tissue donations. This has created protracted waiting and greater suffering for patients awaiting organ transplantation. The Emergency Cardiovascular Care community of the American Heart Association supports efforts to optimize the ethical
acquisition of organ and tissue donations. Studies suggest no
difference in functional outcomes of organs transplanted from
patients who are determined to be brain dead as a
consequence of cardiac arrest when compared with donors who
are brain dead from other causes. Therefore it is reasonable to
suggest that all communities should optimize retrieval of tissues
and organ donations in brain-dead post–cardiac arrest patients
(in hospital) and those pronounced dead in the out-of-hospital
setting.

Most important to this process are advanced planning and
infrastructure support to allow organ donation to occur in a
manner sensitive to the needs of the donor’s family and without
undue burden on the staff. Medical directors of EMS agencies,
emergency departments, and critical care units should develop
protocols and implementation plans with the regional organ and
tissue donation program to optimize donation after a cardiac
arrest death. These include

- A process by which permission for organ and tissue
donations will be obtained for in- and out-of-hospital
settings
- The establishment of clearly defined guidelines for organ
and tissue procurement that will be available to all
healthcare providers both in- and out-of-hospital
- Availability of information to address the possible difference
between applicable laws and social values in procedures
for organ procurement
- The emotional support to be offered to providers postevent