Practice Case Scenario 1
Hypovolemic Shock
(Child; Uncompensated Shock)

Scenario Lead-in
Prehospital: You are dispatched to transport a 12 year old with abdominal injuries caused by flipping over bicycle handlebars. Mother reports that this happened about 4 hours ago. There was no loss of consciousness and the child was wearing a helmet. You observe the patient in obvious discomfort, and he says he has worsening abdominal pain. There are no indications of spinal injury.

ED: Parents arrive with their 12 year old with abdominal injuries caused by flipping over bicycle handlebars. Mother reports this happened about 4 hours ago. There was no loss of consciousness and the child was wearing a helmet. Patient appears in obvious discomfort, and he says he has worsening abdominal pain. Spinal injury has been ruled out.

General Inpatient Unit: As a member of the rapid response team, you respond to a 12 year old admitted with abdominal injuries caused by flipping over bicycle handlebars. History and physical exam are consistent with no loss of consciousness at scene, and patient was wearing a helmet. Patient is in obvious discomfort, and he says he has worsening abdominal pain. Spinal injury has been ruled out.

ICU: You are called to the bedside of a 12 year old who has been admitted to the intensive care unit with abdominal injuries caused by flipping over bicycle handlebars. History and physical are consistent with no loss of consciousness at scene and patient was wearing a helmet. Patient is in obvious discomfort, and he says he has worsening abdominal pain. Spinal injury has been ruled out.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis should be on identification of compensated traumatic hypovolemic shock progressing to hypotensive shock despite bolus fluid administration. Priorities include immediate establishment of intravenous (IV)/intraosseous (IO) access and administration of fluid bolus of isotonic crystalloid, repeated as needed to treat shock signs. Reassessment of cardiorespiratory status is needed during and after each fluid bolus. Glucose concentration should be checked with point-of-care (POC) testing. When this child’s shock does not respond to 2-3 fluid boluses of isotonic crystalloid, bolus administration of packed red blood cells is indicated. Providers must recognize the need for expert consultation (eg, pediatric trauma surgeon) and further diagnostic studies.

Scenario-Specific Objectives
• Recognizes initial compensated shock and hypotensive shock; this scenario begins with a child in compensated shock who progresses to hypotensive shock despite bolus fluid administration
• Summarizes signs and symptoms of hypovolemic shock; key indicators in this scenario include abdominal trauma, tachycardia, mottled skin, weak pulses, and decreased level of consciousness
• Demonstrates correct interventions for hypovolemic shock; this patient requires oxygen administration, administration of one or more boluses of isotonic crystalloid with careful reassessment during and after each fluid bolus, administration of packed red blood cells, and surgical consult
• Summarizes how to evaluate systemic (end-organ) perfusion; indicators appropriate for this scenario include skin temperature/color, level of consciousness, and urine output

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Appearance
• Awake, in obvious discomfort

Breathing
• Increased work of breathing, mild tachypnea

Circulation
• Pale, with mottled hands and feet

Identify
• Immediate intervention needed

Intervene
• Activate emergency response system.
• Administer 100% oxygen by nonre-breathing mask.
• Apply cardiac monitor.
• Apply pulse oximeter.

Vital Signs
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>130/min</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>110/50 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>30/min</td>
</tr>
<tr>
<td>SPO2</td>
<td>92% room air</td>
</tr>
<tr>
<td>Temperature</td>
<td>37.5°C (99.5°F)</td>
</tr>
<tr>
<td>Weight</td>
<td>46 kg</td>
</tr>
<tr>
<td>Age</td>
<td>12 years</td>
</tr>
</tbody>
</table>
Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

- **Airway:** Clear
- **Breathing:** Respiratory rate about 30/min; mild subcostal and intercostal retractions; mild nasal flaring; SpO₂ 92% on room air, increases to 95% with 100% oxygen administered via nonrebreathing mask; lungs clear to auscultation
- **Circulation:** Heart rate 130/min; central pulses weak, peripheral pulses barely felt; capillary refill about 4 seconds; cool and mottled hands and feet; blood pressure 110/50 mm Hg

Remainder of Primary Assessment performed if airway, ventilation, and perfusion are adequately supported

- **Disability:** Alert
- **Exposure:** Rectal temperature 37.5°C (99.5°F); weight 46 kg

Evaluate—Secondary Assessment
Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Initial Shock Therapy

SAMPLE history (only to extent needed to evaluate reversible causes)
- **Signs and symptoms:** Mechanism of injury, abdominal pain, distended abdomen
- **Allergies:** None known
- **Medications:** Albuterol inhaler
- **Past medical history:** Mild asthma
- **Last meal:** 6 hours ago
- **Events (onset):** Thrown from bicycle, abdomen caught on handlebars 4 hours ago; initial pain, now worse; increased work of breathing

Physical examination
- **Repeat vital signs after oxygen and 2 boluses of 20 mL/kg fluids:** Heart rate 90-100/min; respiratory rate 15/min; SpO₂ 96% with 100% oxygen via nonrebreathing mask; blood pressure 90/50 mm Hg; capillary refill 4 seconds
- **Head, eyes, ears, nose, and throat/neck:** Mucous membranes moist
- **Heart and lungs:** No extra heart sounds or murmurs
- **Abdomen:** Distended, tender; hypoactive bowel sounds
- **Extremities:** Superficial abrasions; central pulses readily palpable, weak peripheral pulses; capillary refill 4 seconds
- **Back:** Normal
- **Neurologic:** Responds appropriately to questions, but clearly in pain; pupils 4 mm, equal, briskly reactive to light

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- Capillary gas: pH 7.30, PaCO₂ 25 mm Hg, PaO₂ 30 mm Hg, Hemoglobin 7 g/dL
- Glucose (POC) 135 mg/dL (7.5 mmol/L)
- Pending: Electrolytes, blood urea nitrogen/creatinine, calcium, complete blood count with differential, prothrombin time/international normalized ratio/partial thromboplastin time

Imaging
- Chest x-ray: Small heart, clear lung fields
- Abdominal computed tomography: Moderate liver laceration

Identify/Intervene
- **Respiratory distress**
- **Compensated shock**
- Sinus tachycardia

- **Obtain vascular access (IV/IO); send blood sample for stat type and cross match.**
- **Administer a fluid bolus 20 mL/kg of isotonic crystalloid; repeat boluses rapidly IV/IO; assess perfusion; and monitor cardiorespiratory status closely during and immediately after each fluid bolus.**
 - Stop fluid bolus if signs of heart failure develop (eg, increased respiratory distress or development of rales or hepatomegaly).
 - Check POC glucose concentration and treat hypoglycemia if needed.
 - Assess response to oxygen.

Identify/Intervene
- **Hypotensive shock (likely hypovolemia related to blood loss)**

- **Repeat bolus of 20 mL/kg of isotonic crystalloid IV/IO push; repeat boluses needed for persistent shock symptoms.**
- **Perform careful and frequent cardiorespiratory assessment during and after each fluid bolus.**
 - Stop fluid bolus if signs of heart failure (increased respiratory distress or development of rales or hepatomegaly).
 - Consider administration of 10 mL/kg of packed red blood cells if signs of shock and hemodynamic instability persist despite 2-3 boluses of isotonic crystalloids.
 - Arrange for transfer to surgery if patient cannot achieve hemodynamic stability.
 - Obtain expert consultation (eg, from trauma surgeon or pediatric surgeon); additional diagnostic studies will be necessary.
 - Arrange transfer to intensive care unit (ICU) for closer monitoring if child is not already in ICU.

Identify/Intervene
- **A blood glucose level should be performed as soon as reasonably possible in all critically ill children. Hypoglycemia should be treated immediately.**
- **Child is anemic as the result of blood loss and isotonic crystalloid therapy.**
- **Metabolic acidosis with respiratory compensation. The metabolic acidosis should correct if the child’s abdominal injury has stabilized and effective shock resuscitation is provided.**
- **Additional studies will be needed to evaluate abdominal injury.**

Reevaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 1
Hypovolemic Shock (Child; Uncompensated Shock)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Student-Led Summary</td>
<td></td>
</tr>
<tr>
<td>Can you describe the events from your perspective?</td>
<td>How were you able to [insert action here]?</td>
<td>What are the main things you learned?</td>
<td></td>
</tr>
<tr>
<td>How well do you think your treatments worked?</td>
<td>Why do you think you were able to [insert action here]?</td>
<td>Can someone summarize the key points made?</td>
<td></td>
</tr>
<tr>
<td>Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>Tell me a little more about how you [insert action here].</td>
<td>What are the main take-home messages?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor Observations</th>
<th>Needs Improvement</th>
<th>Instructor-Led Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>I noticed that [insert action here].</td>
<td>Why do you think [insert action here] occurred?</td>
<td>Let’s summarize what we learned…</td>
</tr>
<tr>
<td>I observed that [insert action here].</td>
<td>How do you think [insert action here] could have been improved?</td>
<td>Here is what I think we learned…</td>
</tr>
<tr>
<td>I saw that [insert action here].</td>
<td>What was your thinking while [insert action here]?</td>
<td>The main take-home messages are…</td>
</tr>
<tr>
<td></td>
<td>What prevented you from [insert action here]?</td>
<td>What are the therapeutic end points during shock management? (Answer: Normalized heart rate; improved peripheral perfusion, mental status, and urine output; maintenance of blood pressure)</td>
</tr>
</tbody>
</table>

- Which are the indirect signs of improved end-organ function? (Answer: Improved skin blood flow, increased responsiveness/improved level of consciousness, increased urine output, correction of lactic acidosis)
Practice Case Scenario 2
Hypovolemic Shock
(Infant; Nonaccidental Trauma With Increased Intracranial Pressure)

Scenario Lead-in

Prehospital: You are dispatched to transport a 6 month old with altered level of consciousness. The infant was picked up from day care earlier today and reportedly slept during the car ride home. Her father reports that he was unable to get the infant to eat dinner. She lies listless in father’s arms.

ED: Emergency medical services providers arrive with a 6 month old with altered level of consciousness. The infant was reportedly picked up from day care and slept during the car ride home. Her father reports that he was unable to get her to eat dinner. The infant lies listless in her father’s arms. The emergency medical services providers were unable to establish peripheral intravenous access.

General Inpatient Unit: As a member of the rapid response team, you respond to a 6-month-old infant with altered level of consciousness who was admitted directly from her physician’s office. The father reported that he picked up the infant from day care and she slept during the car ride home. The father reports that he was unable to get the infant to eat dinner. The infant lies listless in the crib. The ward team has been unable to establish peripheral intravenous access.

ICU: You are asked to assess and manage a 6 month old with altered level of consciousness. The infant was picked up from day care by her father, who reports that the infant slept during the car ride home. The father reports that he was unable to get the infant to eat dinner. The infant lies listless in the crib. The infant’s peripheral intravenous access has infiltrated.

Scenario Overview and Learning Objectives

Scenario Overview

Emphasis should be on identification of compensated hypovolemic shock. Priorities include immediate establishment of intravenous (IV)/intraosseous (IO) access and administration of fluid bolus of isotonic crystalloid, repeated as needed to treat shock signs. Reassessment of cardiorespiratory status is needed during and after each fluid bolus. Glucose concentration should be checked with point-of-care (POC) testing. This infant's shock is complicated by signs of increased intracranial pressure, probably associated with intracranial injury. Providers must recognize the need for expert consultation and further diagnostic studies.

Scenario-Specific Objectives

- Recognizes signs of compensated and hypotensive shock; this scenario illustrates decompensated hypovolemic shock, complicated by increased intracranial pressure (key indicators include decreased level of consciousness, tachycardia, cool and mottled skin, delayed capillary refill, and hypotension)
- Summarizes signs and symptoms of hypovolemic shock; key indicators in this case include signs of shock with signs of trauma
- Demonstrates correct interventions for hypovolemic shock; this case requires administration of oxygen, administration of an isotonic fluid bolus with careful reassessment during and after the fluid bolus, and consulting someone with surgical expertise (eg, pediatric or neurosurgeon)
- Summarizes how to evaluate systemic (end-organ) perfusion; indicators appropriate for this include skin temperature/color, level of consciousness, and urine output
- Recognizes need for reporting and intervention for possible abuse

Evaluate—Initial Impression

(Pediatric Assessment Triangle)

Appearance
- Lethargic

Breathing
- Irregular and shallow breaths

Circulation
- Pale with significant mottling in extremities

Identify

- Immediate intervention needed

Intervene

- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Provide bag-mask ventilation with 100% oxygen.
- Attach cardiac monitor.
- Apply pulse oximeter.

Vital Signs

- Heart rate: 160/min
- Blood pressure: 84/30 mm Hg
- Respiratory rate: 10-18/min
- \(\text{SpO}_2 \): 93% on room air
- Temperature: 37.0°C (98.6°F)
- Weight: 8.6 kg
- Age: 6 months

© 2016 American Heart Association
Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

- **Airway:** Clear
- **Breathing:** Respiratory rate 10-18/min and irregular; mild subcostal and intercostal retractions; SpO₂ 93% on room air, increases to 95% with 100% oxygen with bag-mask ventilation; lungs clear to auscultation
- **Circulation:** Heart rate 160/min; pale; central pulses fair, peripheral pulses weak; capillary refill about 4 seconds; mottled arms and legs; cool and dusky hands and feet; blood pressure 84/30 mm Hg
- **Disability:** Lethargic, responds to pain; pupils have sluggish reaction to light
- **Exposure:** Rectal temperature 37.0°C (98.6°F); weight 8.6 kg

Identify
- Respiratory failure
- Compensated shock
- Sinus tachycardia
- Possible increased intracranial pressure

Intervene
- Obtain vascular access (IV/IO).
- Administer a fluid bolus of 20 mL/kg of isotonic crystalloid rapidly IV/IO; assess perfusion and monitor cardiopulmonary status closely during and immediately after each fluid bolus.
 - Stop fluid bolus if signs of heart failure develop (eg, increased respiratory distress or development of rales or hepatomegaly).
- Check POC glucose concentration and treat hypoglycemia if needed.
- Assess response to oxygen.

Evaluate—Secondary Assessment
Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Initial Shock Therapy

SAMPLE history (only to extent needed to evaluate reversible causes)
- **Signs and symptoms:** Lethargy, irregular breathing
- **Allergies:** None known
- **Medications:** None
- **Past medical history:** Term newborn
- **Last meal:** 6 hours ago
- **Events (onset):** Patient reportedly was "normal self" before being dropped off at day care. Day care told dad that the infant took second nap before being picked up. Infant has demonstrated increasing lethargy, decreased work of breathing, and irregular respiratory rate.

Physical examination
- **Repeat vital signs after oxygen and fluids:** Heart rate 140/min; respiratory rate 30/min bag-mask ventilation; SpO₂ 95% during bag-mask ventilation with 100% oxygen; blood pressure 80/50 mm Hg
- **Head, eyes, nose, and throat/neck:** Bruising to ears
- **Heart and lungs:** Rapid rate, no extra heart sounds or murmurs; lungs sound clear
- **Abdomen:** No palpable liver edge; nondistended; nontender; hypoactive bowel sounds
- **Extremities:** Normal skin turgor
- **Back:** Normal
- **Neurologic:** Lethargic; pupils 4 mm, equal, sluggish reaction to light

Identify
- Compensated hypovolemia shock
- Respiratory failure with disordered control of breathing (decreased level of consciousness)
- Possible intracranial injury with increased intracranial pressure

Intervene
- Repeat bolus of 20 mL/kg of isotonic crystalloid IV/IO push; repeat boluses needed for persistent shock symptoms.
- Perform careful and frequent cardiopulmonary assessment during and after each fluid bolus.
 - Stop fluid bolus if signs of heart failure develop (increased respiratory distress or development of rales or hepatomegaly).
- Continue to provide bag-mask ventilation; prepare for insertion of advanced airway.
- Identify possible signs of increased intracranial pressure associated with intracranial injury.
- Obtain expert consultation (eg, from trauma surgeon, pediatric surgeon, or neurosurgeon).
 - Additional diagnostic studies will be necessary.
- Arrange transfer to intensive care unit (ICU) for closer monitoring if infant is not already in ICU.

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- Capillary gas: pH 7.20, Pco₂ 55 mm Hg, Po₂ 34 mm Hg, base excess –9, hemoglobin 10 g/dL
- Glucose (POC) 80 mg/dL (10.3 mmol/L)
- Pending: Electrolytes, blood urea nitrogen/creatinine, calcium, complete blood count with differential, prothrombin time/international normalized ratio/partial thromboplastin time
- Cultures: Blood, urine

Imaging
- Computed tomography (CT)/magnetic resonance imaging (MRI)/ultrasound stat
- Chest x-ray: Small heart, clear lung fields
- Head CT/MRI

Identify/Intervene
- A blood glucose concentration should be checked as soon as reasonably possible in all critically ill infants and children. Hypoglycemia should be treated immediately.
- Mixed respiratory and metabolic acidosis should improve with support of ventilation and oxygenation and treatment of possible hypovolemic shock.
- Additional studies will be needed to evaluate the cause of poorly reactive pupils and bruising to ears (eg, CT scan/MRI).

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 2
Hypovolemic Shock (Infant; Nonaccidental Trauma With Increased Intracranial Pressure)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Student-Led Summary</td>
<td></td>
</tr>
<tr>
<td>Can you describe the events from your perspective?</td>
<td>How were you able to [insert action here]?</td>
<td>What are the main things you learned?</td>
<td></td>
</tr>
<tr>
<td>How well do you think your treatments worked?</td>
<td>Why do you think you were able to [insert action here]?</td>
<td>Can someone summarize the key points made?</td>
<td></td>
</tr>
<tr>
<td>Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>Tell me a little more about how you [insert action here].</td>
<td>What are the main take-home messages?</td>
<td></td>
</tr>
<tr>
<td>What could you have improved?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What did the team do well?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor Observations</th>
<th>Needs Improvement</th>
<th>Instructor-Led Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>I noticed that [insert action here].</td>
<td>Why do you think [insert action here] occurred?</td>
<td>Let’s summarize what we learned…</td>
</tr>
<tr>
<td>I observed that [insert action here].</td>
<td>How do you think [insert action here] could have been improved?</td>
<td>Here is what I think we learned…</td>
</tr>
<tr>
<td>I saw that [insert action here].</td>
<td>What was your thinking while [insert action here]?</td>
<td>The main take-home messages are…</td>
</tr>
<tr>
<td></td>
<td>What prevented you from [insert action here]?</td>
<td>What are the therapeutic end points during shock management? (Answer: Normalized heart rate; improved peripheral perfusion, mental status, and urine output; maintenance of blood pressure)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Which are the indirect signs of improved end-organ function? (Answer: Improved skin blood flow, increased responsiveness/improved level of consciousness, increased urine output, correction of lactic acidosis)</td>
</tr>
</tbody>
</table>

Action
- Assesses ABCDE, including vital signs
- Administers 100% oxygen
- Applies cardiac monitor and pulse oximeter
- Recognizes signs and symptoms of hypovolemic shock
- Categorizes shock as compensated then hypovolemic
- Establishes IV or IO access
- Directs rapid administration of fluid bolus of isotonic crystalloid; monitors for signs of heart failure during and after fluid bolus
- Reassesses patient in response to interventions, particularly during and after each fluid bolus
- Repeats fluid bolus as needed to treat shock
- Checks glucose with point-of-care testing
Scenario Lead-in
Prehospital: You are responding to a 9-1-1 call for a 10 year old with breathing difficulty.
ED: A 10-year-old girl is brought in by first responders from her home after her mother called 9-1-1 saying that her daughter had difficulty breathing.
General Inpatient Unit: You are called to the room of a 10-year-old girl who is being admitted from the emergency department for respiratory distress.
PICU: You are called to the room of a 10-year-old girl who is being admitted from the emergency department for respiratory distress.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis in this scenario is on rapid identification and management of respiratory distress/potential respiratory failure caused by lower airway obstruction/asthma. The provider must quickly recognize signs of distress (severe tachypnea and hypoxemia on room air) and provide initial therapy, including administration of 100% oxygen, nebulized albuterol, and ipratropium and oral corticosteroids. Continuous nebulized albuterol may also be needed. Early consultation with an expert in the care of children with status asthmaticus is required because this child has a history of status asthmaticus requiring multiple intensive care unit (ICU) admissions. The child improves, so acceleration of care is not required. During the debriefing, the student is asked the indications for endotracheal intubation.

Scenario-Specific Objectives
- Recognizes signs and symptoms of respiratory distress caused by lower airway obstruction; in this scenario, they include increased respiratory rate and effort, prolonged expiratory time, and wheezing
- Performs correct initial interventions for lower airway obstruction; in this scenario, they include administration of oxygen, nebulized albuterol, and ipratropium bromide and corticosteroids
- Discusses importance of obtaining expert consultation if child with asthma has a history of ICU admissions and/or fails to respond to initial interventions

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Identify
- Airway: Obstructed; no abnormal breath sounds are audible
- Breathing: Moderate suprasternal and intercostal retractions; prolonged expiratory time; expiratory wheezes in the lower lobes; respiratory rate 40/min; SpO₂ 86% on room air, just before 100% oxygen administration
- Circulation: Heart rate 140/min; pale skin; strong radial pulse; capillary refill 2 seconds; blood pressure 106/68 mm Hg
- Disability: Awake; speaks in 2- to 3-word sentences
- Exposure: Afebrile; no rashes; weight 35 kg

Intervene
- Allow child to maintain position of comfort.
- Assess response to oxygen.
- Administer nebulized albuterol and nebulized ipratropium.
- Administer oral corticosteroids.

Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

Identify
- Immediate intervention needed
- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Administer 100% oxygen by nonre-breathing face mask.
- Apply cardiac monitor.
- Apply pulse oximeter.

Intervene
- Respiratory distress, possible respiratory failure
- Lower airway obstruction
- Allow child to maintain position of comfort.
- Assess response to oxygen.
- Administer nebulized albuterol and nebulized ipratropium.
- Administer oral corticosteroids.

Vital Signs
- Heart rate: 140/min
- Blood pressure: 106/68 mm Hg
- Respiratory rate: 40/min
- SpO₂: 86% on room air
- Temperature: Afebrile
- Weight: 35 kg
- Age: 10 years
Evaluate—Secondary Assessment
Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Stabilization of Airway, Oxygenation, and Ventilation

SAMPLE history
- **Signs and symptoms:** Cough; respiratory distress
- **Allergies:** Molds and grass
- **Medications:** Inhaler that has not been refilled for several weeks
- **Past medical history:** Known asthmatic, poorly controlled due to poor compliance with medical care; 3 ICU admissions for respiratory failure; family members smoke in the house
- **Last meal:** 3 hours ago
- **Events (onset):** Cold symptoms for the last 3 days; increased cough and distress for past 24 hours

Physical examination
- **Repeat vital signs after oxygen and fluids:** Heart rate 140/min; respiratory rate 32/min; \(\text{SpO}_2\) 94% when receiving 100% oxygen via nonrebreathing face mask; blood pressure 112/71 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Normal
- **Heart and lungs:** Wheezing on expiration in lower lobes; poor air movement; persistent moderate suprasternal and intercostal retractions
- **Abdomen:** Normal
- **Extremities:** Normal
- **Back:** Normal
- **Neurologic:** Anxious; no other abnormalities; now speaking in 3- to 4-word sentences

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory distress</td>
<td>Assess response to albuterol and ipratropium.</td>
</tr>
<tr>
<td>Lower airway obstruction</td>
<td>If wheezing and aeration are not improved, consider provision of continuous nebulized albuterol.</td>
</tr>
<tr>
<td>Obtain vascular access.</td>
<td>Check glucose with point-of-care (POC) testing.</td>
</tr>
<tr>
<td>Consider obtaining expert consultation regarding the management of pediatric status asthmaticus.</td>
<td>Obtain vascular access.</td>
</tr>
<tr>
<td>Obtain vascular access.</td>
<td>Check glucose with point-of-care (POC) testing.</td>
</tr>
<tr>
<td>Consider obtaining expert consultation regarding the management of pediatric status asthmaticus.</td>
<td>Obtain vascular access.</td>
</tr>
<tr>
<td>If no improvement in signs of lower airway obstruction despite continuous albuterol and administration of ipratropium bromide, consider additional interventions (eg, magnesium sulfate) and diagnostic testing (arterial blood gas, chest x-ray), and consult an expert in the management of pediatric status asthmaticus (if not already done).</td>
<td>If no improvement in signs of lower airway obstruction despite continuous albuterol and administration of ipratropium bromide, consider additional interventions (eg, magnesium sulfate) and diagnostic testing (arterial blood gas, chest x-ray), and consult an expert in the management of pediatric status asthmaticus (if not already done).</td>
</tr>
<tr>
<td>Arrange for transfer of child to the ICU (if the child is not already in the ICU) so that child may receive additional monitoring and therapy.</td>
<td>Arrange for transfer of child to the ICU (if the child is not already in the ICU) so that child may receive additional monitoring and therapy.</td>
</tr>
<tr>
<td>If child’s condition does improve, be prepared to titrate inspired oxygen concentration, as tolerated, to keep (\text{SpO}_2) 94% or greater.</td>
<td>If child’s condition does improve, be prepared to titrate inspired oxygen concentration, as tolerated, to keep (\text{SpO}_2) 94% or greater.</td>
</tr>
</tbody>
</table>

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- **Glucose (POC testing):** 126 mg/dL (7.0 mmol/L)

<table>
<thead>
<tr>
<th>Identify/Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Although laboratory tests are generally not appropriate during the immediate management, a blood glucose concentration should be checked as soon as reasonably possible in all critically ill infants and children. Hypoglycemia should be treated immediately.</td>
</tr>
<tr>
<td>Additional testing (eg, chest x-ray) may be performed if child demonstrates any additional respiratory signs or symptoms.</td>
</tr>
</tbody>
</table>

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 3
Lower Airway Obstruction (Child; More Severely Ill)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PALS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Needs Improvement</td>
<td>Instructor-Led Summary</td>
</tr>
<tr>
<td>Instructor Observations</td>
<td>Student-Led Summary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Needs Improvement</td>
<td>Instructor-Led Summary</td>
</tr>
<tr>
<td>Instructor Observations</td>
<td>Student-Led Summary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practice Case Scenario 4
Upper Airway Obstruction
(Child; Moderate to Severe)

Scenario Lead-in
Prehospital: You are responding to a 9-1-1 call for a 1 year old with breathing difficulty.
ED: A 1-year-old girl is brought in by first responders from her home after mother called 9-1-1 because the child was having difficulty breathing.
General Inpatient Unit: You are called to the room of a 1-year-old girl who is being admitted from the emergency department for respiratory distress and croup-like symptoms.
ICU: You are called to the room of a 1-year-old girl who is being admitted from the emergency department for respiratory distress and croup-like symptoms.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis in this scenario is on rapid recognition and management of respiratory distress associated with significant upper airway obstruction. The child’s lethargy, signs of increased respiratory effort, and stridor at rest all indicate the need to remove the child from the parents, position the child to open the airway and suction the nares, administer nebulized epinephrine and dexamethasone, and prepare for more-advanced care, including early expert consultation. Discussion during the debriefing addresses estimation of endotracheal tube size.

Scenario-Specific Objectives
• Identifies the signs and symptoms of significant upper airway obstruction; in this scenario, they include significant tachypnea and increased work of breathing, inspiratory stridor, fair chest movement, and decreased level of consciousness
• Recognizes that removing the child from the parent’s arms is indicated for this child; in this scenario, the child is lethargic with only fair chest rise and mild cyanosis
• Performs correct interventions for significant upper airway obstruction; in this scenario, these include positioning to open airway, suctioning of nares, oxygen administration, nebulized epinephrine (may be repeated), administration of dexamethasone, and preparation for respiratory support
• Identifies the need to obtain expert consultation to be available for insertion of advanced airway

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Appearance
• Being held by parent; appears lethargic, not moving much
Breathing
• Tachypneic with increased work of breathing; high-pitched inspiratory stridor; only fair chest rise noted
Circulation
• Mild cyanosis of lips

Identify
• Immediate intervention needed
Intervene
• Activate the emergency response system. Emergency medical services requests additional assistance if needed.
• Place patient on bed and reposition to open airway using head tilt–chin lift.
• Administer 100% oxygen by nonre-breathing face mask.
• Apply cardiac monitor.
• Apply pulse oximeter.

Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

• Airway: Patent; no oral obstruction
• Breathing: High-pitched, faint, inspiratory stridor; respiratory rate 64/min; moderate, suprasternal, intercostal, and subcostal retractions; SpO₂ 84% before oxygen administration, then 95% after provision of 100% inspired oxygen; nasal flaring present with copious secretions; improved chest rise with repositioning; transmitted upper airway sounds with overall poor air entry
• Circulation: Heart rate 154/min; mild cyanosis of lips before oxygen administration (lips now pink); warm skin centrally and peripherally; strong central and peripheral pulses; capillary refill 3 seconds; blood pressure 75/43 mm Hg
• Disability: Lethargic, but withdraws and whimpers to tactile stimulation; anterior fontanel soft and flat
• Exposure: Temperature 36.3°C (97.4°F); weight 10 kg

Identify
• Respiratory distress or failure
• Upper airway obstruction
Intervene
• Continue positioning/oxygen administration.
• Suction nares.
• Administer nebulized epinephrine.
• Contact expert help to be available if child fails to improve or deteriorates further and to develop plan of care.
Evaluate—Secondary Assessment

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Stabilization of Airway, Oxygenation, and Ventilation</td>
<td></td>
</tr>
<tr>
<td>SAMPLE history</td>
<td></td>
</tr>
<tr>
<td>Signs and symptoms: Awoke yesterday with fever, barking, and seal-like cough; seemed to improve yesterday, but worse overnight</td>
<td></td>
</tr>
<tr>
<td>Allergies: None known</td>
<td></td>
</tr>
<tr>
<td>Medications: Acetaminophen for fever given by mother 2 hours ago</td>
<td></td>
</tr>
<tr>
<td>Past medical history: Otitis media at 10 and 11 months</td>
<td></td>
</tr>
<tr>
<td>Last meal: 8 hours ago; refused bottle and breakfast this morning</td>
<td></td>
</tr>
<tr>
<td>Events (onset): Symptoms worse at night; increased work of breathing and more lethargic this morning</td>
<td></td>
</tr>
<tr>
<td>Physical examination</td>
<td></td>
</tr>
<tr>
<td>Repeat vital signs after oxygen and racemic epinephrine: Heart rate 161/min; respiratory rate 56/min; (\text{SpO}_2) 99% on supplementary oxygen; blood pressure 77/48 mm Hg</td>
<td></td>
</tr>
<tr>
<td>Head, eyes, ears, nose, and throat/neck: Nasal flaring persists; less nasal secretions; airway remains patent with support and positioning; moist mucous membranes</td>
<td></td>
</tr>
<tr>
<td>Heart and lungs: Lungs clear; transmitted upper airway sounds (less pronounced); suprasternal, intercostal, and subcostal retractions improved; improved bilateral chest rise; stridor is louder</td>
<td></td>
</tr>
<tr>
<td>Abdomen: Normal</td>
<td></td>
</tr>
<tr>
<td>Extremities: Normal</td>
<td></td>
</tr>
<tr>
<td>Back: Normal</td>
<td></td>
</tr>
<tr>
<td>Neurologic: Becoming more alert</td>
<td></td>
</tr>
</tbody>
</table>

Evaluate—Diagnostic Assessments

Perform Throughout the Evaluation of the Patient as Appropriate

<table>
<thead>
<tr>
<th>Identify/Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab data</td>
</tr>
<tr>
<td>Glucose 72 mg/dL (4.2 mmol/L)</td>
</tr>
<tr>
<td>Consider complete blood count and electrolytes</td>
</tr>
<tr>
<td>Imaging</td>
</tr>
<tr>
<td>Lateral soft-tissue neck radiographs may be considered but are generally not necessary</td>
</tr>
</tbody>
</table>

- **Respiratory distress**
- **Upper airway obstruction**
- Evaluate response to nebulized epinephrine.
- Repeat nebulized epinephrine and reassess response.
- Providers may consider use of heliox, but it can’t be used if the child requires a high concentration of inspired oxygen.
- Check glucose using point-of-care testing.
- Administer oral/intravenous/intramuscular corticosteroids (eg, dexamethasone); administer oral corticosteroids if child is sufficiently alert.
- Be prepared to provide initial advanced care, such as immediate bag-mask ventilation, if the child’s condition fails to improve or deteriorates further.
- Arrange for the child to have careful, close observation as severe symptoms may recur, requiring transfer to intensive care unit (ICU) (if child is not already in ICU).

Evaluate—Diagnostic Assessments

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 4
Upper Airway Obstruction (Child; Moderate to Severe)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
</table>
| Directs assessment of ABCDE and vital signs | **Student Observations**
 - Can you describe the events from your perspective?
 - How well do you think your treatments worked?
 - Can you review the events of the scenario (directed to the Timer/Recorder)?
 - What could you have improved?
 - What did the team do well? | **Done Well**
 - How were you able to [insert action here]?
 - Why do you think you were able to [insert action here]?
 - Tell me a little more about how you [insert action here]. | **Student-Led Summary**
 - What are the main things you learned?
 - Can someone summarize the key points made?
 - What are the main take-home messages? |
| Administers 100% oxygen | **Instructor Observations**
 - I noticed that [insert action here].
 - I observed that [insert action here].
 - I saw that [insert action here]. | **Needs Improvement**
 - Why do you think [insert action here] occurred?
 - How do you think [insert action here] could have been improved?
 - What was your thinking while [insert action here]? | **Instructor-Led Summary**
 - Let’s summarize what we learned…
 - Here is what I think we learned…
 - The main take-home messages are…
 - In this scenario, the child improved somewhat after interventions to relieve upper airway obstruction. What would be the signs of deterioration and possible indications for bag-mask ventilation or other airway or ventilation support? (Answer: Very rapid or inadequate respiratory rate or irregular breathing pattern; signs of increased work of breathing; decreased breath sounds or aeriation; deterioration in level of consciousness, hypoxemia, or cyanosis)
 - How would you estimate the correct uncuffed endotracheal tube size? (Answer: Would estimate a tube size about 0.5 mm smaller than typical for length and age) |
Practice Case Scenario 5

Asystole
(Infant; Arrest)*

Scenario Lead-in

Prehospital: You are dispatched to a house where a 6-month-old infant has had respiratory distress; she is now unresponsive.

ED: An ambulance is en route to the emergency department with a 6-month-old infant who was found unresponsive in her crib; CPR is ongoing.

General Inpatient Unit: You are called as a member of the rapid response team to see a 6 month old who was admitted with respiratory distress, but she has now become limp and unresponsive.

ICU: You are called to see a 6 month old who became progressively limp and unresponsive. The infant was admitted with respiratory distress with the remainder of the emergency department workup unremarkable.

Vital Signs

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>CPR in progress</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>CPR in progress</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Bag-mask ventilation (CPR)</td>
</tr>
<tr>
<td>SpO₂</td>
<td>Not obtainable</td>
</tr>
<tr>
<td>Temperature</td>
<td>Deferred</td>
</tr>
<tr>
<td>Weight</td>
<td>7 kg</td>
</tr>
<tr>
<td>Age</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Scenario Overview and Learning Objectives

Scenario Overview

This scenario focuses on the identification and management of cardiac arrest and a “nonshockable” rhythm. Emphasis is placed on immediate delivery of high-quality CPR and early administration of epinephrine. The student should identify potential reversible causes of asystole (H’s and T’s); respiratory distress and failure may have caused hypoxia and acidosis in this scenario. Although not required for successful completion of the scenario, the instructor may (if time allows) discuss important elements of post-cardiac arrest care, including titration of inspired oxygen concentration to maintain SpO₂ of 94%-99%; targeted temperature management (especially avoidance or aggressive treatment of fever); hemodynamic support; support of airway, ventilation, and perfusion; and support of neurologic and other end-organ function.

Scenario-Specific Objectives

- Identifies cardiac arrest with a nonshockable rhythm; in this scenario, the infant has asystole
- Describes correct dose and rationale for epinephrine administration
- Summarizes potentially reversible causes of asystole; during the scenario, the student considers possible reversible causes of cardiac arrest (recalled by conditions beginning with H’s and T’s); in this infant, respiratory distress may have produced hypoxia and acidosis
- Discusses principles of post-cardiac arrest care; for this scenario, these include titration of inspired oxygen concentration as tolerated; targeted temperature management (especially prevention of fever); hemodynamic support; support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function

Evaluate—Initial Impression

(Pediatric Assessment Triangle)

Appearance

- Extremities appear to be limp; no spontaneous movement and no visible reaction to noise

Breathing

- No spontaneous breathing

Circulation

- Cyanotic/pale extremities and lips; severe mottling

Identify

Immediate intervention needed

- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Check for response (no response), and perform simultaneous check for breathing (none) while checking for brachial pulse (none).
- Immediately begin high-quality CPR.
Evaluate—Primary Assessment
Deferred to Provide Immediate Basic Life Support

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No response to tap and shout</td>
<td>• Cardiopulmonary arrest</td>
</tr>
<tr>
<td>• No breathing</td>
<td>• Use a CPR feedback device to guide CPR delivery</td>
</tr>
<tr>
<td>• No pulse</td>
<td>• When defibrillator arrives, apply pads/ leads and turn on monitor</td>
</tr>
<tr>
<td>• Weight 7 kg using color-coded length-based resuscitation tape</td>
<td>• Identify rhythm (asystole); immediately resume high-quality CPR, rotating compressors and checking rhythm every 2 minutes</td>
</tr>
<tr>
<td></td>
<td>• Obtain vascular access (intravenous [IV]/intraosseous [IO])</td>
</tr>
<tr>
<td></td>
<td>• Give epinephrine 0.01 mg/kg (0.1 mL/kg of 0.1 mg/mL concentration) IV/ IO during chest compressions. Follow with saline flush. Repeat every 3-5 minutes during cardiac arrest</td>
</tr>
<tr>
<td></td>
<td>• Apply pulse oximeter (per local protocol, may be deferred until return of spontaneous circulation [ROSC])</td>
</tr>
</tbody>
</table>

Evaluate—Secondary Assessment
Deferred Except to Identify Reversible Causes

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Signs and symptoms: History as reported in scenario lead-in</td>
<td>• Cardiopulmonary arrest</td>
</tr>
<tr>
<td>• Allergies: None</td>
<td>• Asystole</td>
</tr>
<tr>
<td>• Medications: None</td>
<td>• ROSC</td>
</tr>
<tr>
<td>• Past medical history: None</td>
<td>• Continue high-quality CPR</td>
</tr>
<tr>
<td>• Last meal: 4 hours ago</td>
<td>• Reassess rhythm and rotate compressors every 2 minutes; minimize interruptions in chest compressions, limiting any pause to less than 10 seconds</td>
</tr>
<tr>
<td>• Events (onset): As specified in scenario lead-in</td>
<td>• Consider potentially reversible causes of asystole (H’s and T’s)</td>
</tr>
</tbody>
</table>

Physical examination (deferred until ROSC or only to extent needed to evaluate reversible causes)

- Vital signs after ROSC following high-quality CPR and 2 doses of epinephrine: Sinus rhythm; heart rate 170/min; respiratory rate 20/min (with bag-mask ventilation); SpO₂ 99%; blood pressure 73/42 mm Hg; temperature 36°C (96.8°F)

If no epinephrine is delivered or CPR quality is poor, asystole continues.

SAMPLE history (deferred until ROSC or only to extent needed to evaluate reversible causes, ie, the H’s and T’s; do not interrupt resuscitation)

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lab data (as appropriate)</td>
<td>• Blood work and chest x-ray are not available during the scenario.</td>
</tr>
<tr>
<td>• Blood glucose 96 mg/dL (after ROSC)</td>
<td></td>
</tr>
<tr>
<td>• Arterial/venous blood gas, electrolytes, calcium, magnesium</td>
<td></td>
</tr>
</tbody>
</table>

Imaging after ROSC

- Chest x-ray (after ROSC): Normal heart and lung fields

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 5
Asystole (Infant; Arrest)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Student-Led Summary</td>
<td>Instructor-Led Summary</td>
</tr>
<tr>
<td>- Identifies cardiac arrest</td>
<td>- How were you able to [insert action here]?</td>
<td>- What are the main things you learned?</td>
<td>- Let’s summarize what we learned…</td>
</tr>
<tr>
<td>- Directs immediate initiation of high-quality CPR with the use of a feedback device (if available)</td>
<td>- Why do you think you were able to [insert action here]?</td>
<td>- Here is what I think we learned…</td>
<td>- Here is what I think we learned…</td>
</tr>
<tr>
<td>- Applies monitor leads/pads and activation of monitor</td>
<td>- Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>- The main take-home messages are…</td>
<td>- The main take-home messages are…</td>
</tr>
<tr>
<td>- Identifies asystole</td>
<td>- What could you have improved?</td>
<td>Of the potential reversible causes of asystole in this patient, which are most likely? (Answer: Hypoxia)</td>
<td>Of the potential reversible causes of asystole in this patient, which are most likely? (Answer: Hypoxia)</td>
</tr>
<tr>
<td>- Directs establishment of IV or IO access</td>
<td>- What did the team do well?</td>
<td>- What were the key elements of post–cardiac arrest care? (Answer should include titration of oxygen; targeted temperature management; hemodynamic support and support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function.)</td>
<td>- Although not covered in this scenario, what are the key elements of post–cardiac arrest care? (Answer should include titration of oxygen; targeted temperature management; hemodynamic support and support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function.)</td>
</tr>
<tr>
<td>- Directs preparation and administration of 0.01 mg/kg epinephrine (0.1 mL/kg of 0.1 mg/mL concentration) IV/IO bolus at appropriate intervals</td>
<td>- Can you describe the events from your perspective?</td>
<td>- What are the main take-home messages?</td>
<td>- Of the potential reversible causes of asystole in this patient, which are most likely? (Answer: Hypoxia)</td>
</tr>
<tr>
<td>- Directs checking rhythm approximately every 2 minutes while minimizing interruptions in chest compressions</td>
<td>- How well do you think your treatments worked?</td>
<td>- What did the team do well?</td>
<td>- Although not covered in this scenario, what are the key elements of post–cardiac arrest care? (Answer should include titration of oxygen; targeted temperature management; hemodynamic support and support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function.)</td>
</tr>
<tr>
<td>- Identifies at least 3 potential reversible causes of pulseless electrical activity (recalled by the H’s and T’s)</td>
<td>- Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>- Tell me a little more about how you [insert action here].</td>
<td>- Of the potential reversible causes of asystole in this patient, which are most likely? (Answer: Hypoxia)</td>
</tr>
<tr>
<td>- Performs appropriate reassessments</td>
<td>- What could you have improved?</td>
<td>- What did the team do well?</td>
<td>- Although not covered in this scenario, what are the key elements of post–cardiac arrest care? (Answer should include titration of oxygen; targeted temperature management; hemodynamic support and support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function.)</td>
</tr>
</tbody>
</table>

Student-Led Summary
- What are the main things you learned?
- Can someone summarize the key points made?
- What are the main take-home messages?

Instructor-Led Summary
- Let’s summarize what we learned…
- Here is what I think we learned…
- Of the potential reversible causes of asystole in this patient, which are most likely? (Answer: Hypoxia)
- Although not covered in this scenario, what are the key elements of post–cardiac arrest care? (Answer should include titration of oxygen; targeted temperature management; hemodynamic support and support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function.)
Practice Case Scenario 6
Pulseless Electrical Activity
(Child; Arrest)

Scenario Lead-in

Prehospital: You are dispatched to a house where a 3-year-old child is now unresponsive. Prescription pills, including his grandmother’s oral hypoglycemic agent, are scattered throughout the child’s room.

ED: An ambulance is en route to the emergency department with a 3-year-old child who was found unresponsive in his bed. Prescription pills, including his grandmother’s oral hypoglycemic agent, were scattered throughout the child’s room.

General Inpatient Unit: You are called as a member of the rapid response team to see a 3-year-old who was admitted with lethargy; he has now become limp and unresponsive. Emergency medical services had found prescription pills, including his grandmother’s oral hypoglycemic agent, scattered throughout the child’s room.

ICU: You are called to see a 3 year old who was admitted with lethargy; he now has become progressively limp and unresponsive. Emergency medical services found prescription pills, including his grandmother’s oral hypoglycemic agent, scattered throughout the child’s room.

Scenario Overview and Learning Objectives

Scenario Overview
This scenario focuses on the identification and management of the child with cardiac arrest and a “nonshockable” rhythm. Emphasis is placed on immediate delivery of high-quality CPR and early administration of epinephrine. The student should identify potential causes of pulseless electrical activity (PEA) (H’s and T’s). The child has significant hypoglycemia that must be corrected, and other drug toxicities may be present (the team must identify the drugs collected by emergency medical services [EMS] providers). Although not required for successful completion of the scenario, the instructor may (if time allows) discuss important elements of post–cardiac arrest care, including titration of inspired oxygen concentration as tolerated; targeted temperature management (especially prevention of fever); hemodynamic support; support of airway, ventilation, and perfusion; and support of neurologic and other end-organ function.

Scenario-Specific Objectives
- Identifies cardiac arrest with a nonshockable rhythm; in this scenario, the child has PEA
- Describes correct dose and rationale for epinephrine administration
- Summarizes potentially reversible causes of PEA; during the scenario, the student/provider considers possible reversible causes of cardiac arrest (recalled by conditions beginning with H’s and T’s); in this child, significant hypoglycemia and possible other toxic drugs have contributed to the arrest
- Discuss principles of post–cardiac arrest care; these include titration of inspired oxygen concentration as tolerated; targeted temperature management (especially prevention of fever); hemodynamic support; support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Appearance
• Appears to be limp; no spontaneous movement and no visible reaction to noise

Breathing
• No spontaneous breathing

Circulation
• Cyanotic/pale extremities and lips; severe mottling

Identify
• Immediate intervention needed

Intervene
• Activate the emergency response system. Emergency medical services requests additional assistance if needed.
• Check for response (no response), and perform simultaneous check for breathing (none) while checking for carotid pulse (none).
• Immediately begin high-quality CPR.

Vital Signs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>CPR in progress</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>CPR in progress</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>100% bag-mask ventilation (CPR)</td>
</tr>
<tr>
<td>(S\p_{2})</td>
<td>Not obtainable</td>
</tr>
<tr>
<td>Temperature</td>
<td>Deferred</td>
</tr>
<tr>
<td>Weight</td>
<td>17 kg</td>
</tr>
<tr>
<td>Age</td>
<td>3 years</td>
</tr>
</tbody>
</table>

© 2016 American Heart Association
Evaluate—Primary Assessment
Deferred to Provide Immediate Basic Life Support
- No response to tap and shout
- No breathing
- No pulse
- Weight 17 kg using color-coded length-based resuscitation tape

Identify
- **Cardiopulmonary arrest**
- Use a CPR feedback device to guide CPR delivery.
- When defibrillator arrives, apply pads/leads and turn on monitor.
- Identify rhythm (PEA); immediately resume high-quality CPR, rotating compressors and checking rhythm every 2 minutes.
- Obtain vascular access (intravenous [IV]/intraosseous [IO]).
- Give epinephrine 0.01 mg/kg (0.1 mL/kg of 0.1 mg/mL concentration) IV/IO during chest compressions. Follow with saline flush. Repeat every 3-5 minutes during cardiac arrest.
- Apply pulse oximeter (per local protocol, may be deferred until return of spontaneous circulation [ROSC]).

Intervene
- **Cardiopulmonary arrest**
- **PEA**
- **ROSC**
- **Continue high-quality CPR.**
 - Reassess rhythm and rotate compressors every 2 minutes; minimize interruptions in chest compressions, limiting any pause to less than 10 seconds.
 - Consider potentially reversible causes of PEA (H’s and T’s).
 - Check glucose concentration with point-of-care (POC) testing. Give IV dextrose as soon as hypoglycemia is identified.
 - Consider endotracheal intubation, especially if unable to provide adequate ventilation with bag-mask device and advanced care provider is available.
- **After ROSC**
 - Apply pulse oximeter (if not already applied). Titrate inspired oxygen to maintain SpO₂ of 94%-99%.
 - Provide targeted temperature management, including prevention or rapid treatment of fever.
 - Titrate vasoactive drugs to maintain blood pressure in normal range.
 - Support airway, oxygenation, and ventilation.
 - Support neurologic and other end-organ function.
 - Repeat serum glucose and search for other possible causes of cardiac arrest.

Evaluate—Secondary Assessment
Deferred Except to Identify Reversible Causes

SAMPLE history (deferred until ROSC or only to extent needed to evaluate reversible causes, ie, the H’s and T’s; do not interrupt resuscitation)
- **Signs and symptoms:** History as reported in scenario lead-in
- **Allergies:** None
- **Medications:** None
- **Past medical history:** None
- **Last meal:** 5 hours ago
- **Events (onset):** As specified in scenario lead-in

Physical examination (deferred until ROSC or only to extent needed to evaluate reversible causes)
- Blood glucose 35 mg/dL (1.9 mmol/L); all other H’s and T’s within normal limits
- **Vital signs after ROSC following high-quality CPR and 2 doses of epinephrine:** Sinus rhythm; heart rate 172/min; respiratory rate 20/min (with bag-mask ventilation and 100% oxygen); SpO₂ 98%; blood pressure 90/60 mm Hg; temperature 36°C (96.8°F)

If no epinephrine is delivered, CPR quality is poor, or hypoglycemia is not corrected, PEA continues and deteriorates to asystole.

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Lab data (as appropriate)
- Blood glucose 108 mg/dL (6.0 mmol/L) after glucose administration and ROSC
- Arterial/venous blood gas, electrolytes, calcium, magnesium

Imaging after ROSC
- Chest x-ray (after ROSC): Normal heart and lung fields

Identify/Intervene
- Blood work and chest x-ray are not available during the scenario.

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 6
PEA (Child; Arrest)

General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 Dominating the discussion

General Management Objectives

- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
</table>
| • Identifies cardiac arrest | **Student Observations**
- Can you describe the events from your perspective?
- How well do you think your treatments worked?
- Can you review the events of the scenario (directed to the Timer/Recorder)?
- What could you have improved?
- What did the team do well? | **Done Well**
- How were you able to [insert action here]?
- Why do you think you were able to [insert action here]?
- Tell me a little more about how you [insert action here].
Instructor Observations
- I noticed that [insert action here].
- I observed that [insert action here].
- I saw that [insert action here].
Needs Improvement
- Why do you think [insert action here] occurred?
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]?
Instructor-Led Summary
- Let’s summarize what we learned…
- Here is what I think we learned…
- The main take-home messages are…
- Of the potential reversible causes of PEA in this patient, which are most likely? (Answer: Hypoglycemia, perhaps other electrolyte imbalances)
- Although not covered in this scenario, what are the key elements of post-cardiac arrest care? (Answer should include titration of oxygen; targeted temperature management; hemodynamic support and support of airway, oxygenation, and ventilation; and support of neurologic and other end-organ function.) | **Student-Led Summary**
- What are the main things you learned?
- Can someone summarize the key points made?
- What are the main take-home messages? |
Practice Case Scenario 7
Lung Tissue (Parenchymal) Disease (Infant)

Scenario Lead-in
Prehospital: You respond to a 6 month old in respiratory distress.
ED: Emergency medical services providers arrive with a 6-month-old boy brought from home with respiratory distress.
General Inpatient Unit: You are called to the room of a 6-month-old boy being directly admitted for respiratory distress.
PICU: You are called to the room of a 6-month-old boy just admitted to the intensive care unit for respiratory distress.

Scenario Overview and Learning Objectives
Scenario Overview
Emphasis in this scenario is on rapid recognition of respiratory failure associated with lung tissue (parenchymal) disease. Recognition of signs of respiratory failure (including significant respiratory effort, hypoxemia despite high-flow supplementary oxygen, decreased level of consciousness, and cyanosis) should prompt immediate initiation of appropriate therapy, starting with administration of 100% oxygen and bag-mask ventilation. The provider should quickly consult a provider with advanced expertise when the infant fails to improve. This infant needs intubation and mechanical ventilation by an expert in the care of children with respiratory failure. Pediatric intensive care unit (PICU) care is required. During debriefing, the method to estimate endotracheal tube size (cuffed and uncuffed) is discussed. Although not required for successful completion of the scenario, the possible use of continuous positive airway pressure (CPAP) or noninvasive ventilation can be addressed with emphasis that such therapy must be provided in appropriate settings where continuous monitoring is provided and intubation equipment and appropriate provider expertise are readily available.

Scenario-Specific Objectives
- Distinguishes between respiratory distress and respiratory failure; in this scenario, the infant’s clinical signs are consistent with respiratory failure
- Identifies signs and symptoms of lung tissue disease in a pediatric patient; in this scenario, the signs of lung tissue disease include tachypnea, increased respiratory effort, grunting, crackles (rales), tachycardia, and hypoxemia despite oxygen administration
- Implements correct interventions for lung tissue disease; in this scenario, those interventions include administration of a high concentration of oxygen, appropriate monitoring, reassessing the infant, and advancing to more support of oxygenation and ventilation when the infant fails to improve
- Recalls the common causes of lung tissue disease; common causes include pneumonia and aspiration

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Appearance
- Lethargic
Breathing
- Shallow, rapid respirations; grunting
Circulation
- Pale skin; cyanosis

Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

- Airway: Unobstructed but noisy; grunting
- Breathing: Shallow, rapid respirations; mild intercostal and subcostal retractions; bilateral crackles; no stridor or wheezing; expiratory phase is not prolonged; respiratory rate 80/min; SpO₂ 82% on room air and increased to 88% on 100% oxygen via a nonrebreathing face mask
- Circulation: Heart rate 160/min; pale skin; cyanosis; strong central and peripheral pulses; capillary refill 2 seconds; blood pressure 90/60 mm Hg
- Disability: Lethargic; arousable by voice
- Exposure: Temperature 39.2°C (102.5°F); weight 6 kg

Identify
- Immediate intervention needed
- Respiratory failure
- Lung tissue disease
- Assess response to oxygen.
- Provide bag-mask ventilation with 100% oxygen.

Intervene
- Administer 100% oxygen by nonrebreathing face mask.
- Apply cardiac monitor.
- Apply pulse oximeter.

Vital Signs
Heart rate	160/min
Blood pressure	90/60 mm Hg
Respiratory rate	80/min
SpO₂	82% on room air
Temperature	39.2°C (102.5°F)
Weight	6 kg
Age	6 months
Evaluate—Secondary Assessment
Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Stabilization of Airway, Oxygenation, and Ventilation

SAMPLE history
- **Signs and symptoms:** Sudden onset of respiratory distress after an episode of vomiting; no previous cold symptoms or cough
- **Allergies:** None known
- **Medications:** Metoclopramide
- **Past medical history:** None
- **Last meal:** 2 hours ago
- **Events (onset):** Previously well other than history of severe gastroesophageal reflux

Physical examination
- Repeat vital signs after bag-mask ventilation with 100% oxygen: Respiratory rate 24/min; heart rate 160/min; \(\text{SpO}_2\) 96% with bag-mask ventilation; blood pressure 100/70 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Normal
- **Heart and lungs:** Diminished breath sounds; bilateral diffuse crepitations
- **Abdomen:** Normal
- **Extremities:** Normal
- **Back:** Normal
- **Neurologic:** Lethargic; becoming less responsive and more difficult to arouse

Identify/Intervene
- **Respiratory distress**
- **Lung tissue disease**
- **Continue bag-mask ventilation.**
- **Contact a more-advanced provider with appropriate expertise.**
 - **Note:** If the child's level of consciousness improves and continuous monitoring is provided, critical care providers may consider use of non-invasive ventilation support (CPAP or noninvasive positive-pressure ventilation) if there is equipment and appropriate expertise for rapid intubation immediately available.
- **Obtain vascular access.**
- **Obtain arterial/venous blood gas.**
- **Check glucose with point-of-care (POC) testing.**
- **Prepare equipment and skilled personnel for endotracheal intubation using a cuffed tracheal tube.**
- **Treat fever with antipyretics.**
- **Arrange transfer of the child to an intensive care unit (ICU) (unless the child is already in the ICU).**
- **Consider specific interventions for lung tissue disease (eg, antibiotics for suspected pneumonia).**

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- Glucose (POC testing) 136 mg/dL (7.5 mmol/L)
- Complete blood count, blood culture, arterial/venous blood gas pending

Imaging
- Chest x-ray

Identify/Intervene
- **Laboratory tests generally are not appropriate during the first 5-10 minutes when attempting to stabilize a hypoxemic child with severe respiratory distress/respiratory failure.**
- **A blood glucose concentration should be checked as soon as reasonably possible in all critically ill infants and children. Hypoglycemia should be treated immediately.**
- **Chest x-ray shows diffuse bilateral airspace disease.**

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 7
Lung Tissue (Parenchymal) Disease (Infant)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
-Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PALS or PBBLS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Student-Led Summary</td>
<td>Done Well</td>
<td>Needs Improvement</td>
</tr>
<tr>
<td>Can you describe the events from your perspective?</td>
<td>What are the main things you learned?</td>
<td>How were you able to [insert action here]?</td>
<td>Why do you think [insert action here] occurred?</td>
</tr>
<tr>
<td>How well do you think your treatments worked?</td>
<td>Can someone summarize the key points made?</td>
<td>Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>How do you think [insert action here] could have been improved?</td>
</tr>
</tbody>
</table>
| Can you review the events of the scenario (directed to the Timer/Recorder)? | What did the team do well? | What could you have improved? | What was your thinking while [insert action here]?
| What did the team do well? | What prevented you from [insert action here]? | | This infant requires intubation. How will you estimate the appropriate cuffed endotracheal tube size?
| **Instructor Observations** | **Instructor-Led Summary** | **Needs Improvement** | **Instructor-Led Summary** |
| I noticed that [insert action here]. | Let’s summarize what we learned… | Why do you think [insert action here] occurred? | Here is what I think we learned… |
| I observed that [insert action here]. | Here is what I think we learned… | How do you think [insert action here] could have been improved? | The main take-home messages are… |
| I saw that [insert action here]. | This infant requires intubation. How will you estimate the appropriate cuffed endotracheal tube size? | What was your thinking while [insert action here]?
| | Can you explain why CPAP or noninvasive positive-pressure ventilation might improve this child’s oxygenation? (Answer: It will increase alveolar ventilation and ventilation-perfusion match.) | What prevented you from [insert action here]?

In this scenario, the infant requires intubation. How will you estimate the appropriate cuffed endotracheal tube size? Can you explain why CPAP or noninvasive positive-pressure ventilation might improve this child’s oxygenation? (Answer: It will increase alveolar ventilation and ventilation-perfusion match.) Discuss why it is important that such care be provided in a setting where continuous monitoring of the child is possible and appropriate expertise is immediately available.
Practice Case Scenario 8

Distributive Shock

(Adolescent; Septic Shock)

Scenario Lead-in

Prehospital: You are dispatched to transport a 12-year-old girl with a 24-hour history of high fever and lethargy. She has become progressively more confused in the last hour.

ED: Parents arrive with their 12-year-old girl who has a 24-hour history of high fever and lethargy. She has become progressively more confused in the last hour.

General Inpatient Unit: You have just received a 12-year-old girl directly admitted to the ward from her physician’s office. She has a 24-hour history of high fever and lethargy. She has become progressively more confused in the last hour.

ICU: You are called to the bedside of a 12-year-old girl who has been admitted to the intensive care unit with a 24-hour history of high fever and lethargy. She has become progressively more confused in the last hour. The intravenous access placed at the time of admission has infiltrated.

Vital Signs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>130/min</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>80/30 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>35/min</td>
</tr>
<tr>
<td>SpO₂</td>
<td>93% on room air</td>
</tr>
<tr>
<td>Temperature</td>
<td>39.0°C (102.2°F)</td>
</tr>
<tr>
<td>Weight</td>
<td>41 kg</td>
</tr>
<tr>
<td>Age</td>
<td>12 years</td>
</tr>
</tbody>
</table>

Scenario Overview and Learning Objectives

Scenario Overview

Emphasis should be on identification of hypotensive distributive/septic shock. Priorities include immediate establishment of intravenous (IV)/intrathecal (IO) access and administration of fluid bolus(es) of isotonic crystalloid with careful reassessment of cardiorespiratory function during and after each fluid bolus. The provider should also be able to discuss the importance of detection of signs of heart failure and need to stop bolus fluid administration if such signs develop. Within the first hour of identification of signs of septic shock, providers must give bolus fluid therapy, administer antibiotics, and initiate vasoactive drug therapy if shock persists despite bolus fluids. The provider should also make plans to transfer child to an appropriate setting (unless child is already in the intensive care unit [ICU]).

Scenario-Specific Objectives

- Recognizes hypotensive vs compensated shock; in this scenario, the child has hypotensive shock
- Recognizes need for early/rapid intervention with bolus administration of isotonic crystalloids and vasoactive drug therapy within the first hour if shock signs/symptoms persist despite bolus fluid administration
- Recognizes the need for careful and frequent cardiorespiratory reassessment during and after each fluid bolus; the provider looks for signs of heart failure (increased respiratory distress or development of rales or hepatomegaly) and the need to stop bolus fluid administration if signs of heart failure develop
- Recognizes need for early/rapid administration of antibiotics (during the first hour after identification of shock symptoms)

Evaluate—Initial Impression

(Pediatric Assessment Triangle)

Appearance

- Lethargic; irritable; mumbling

Breathing

- Increased rate, but no distress

Circulation

- Pale and mottled

Evaluate—Primary Assessment

Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

Airway: Clear

Breathing: Respiratory rate about 35/min; SpO₂ 93% on room air, increased to 97% with administration of 100% oxygen; lungs clear to auscultation

Circulation: Heart rate 130/min; central pulses good, peripheral pulses bounding; flash capillary refill (less than 1 second); warm, but mottled hands and feet; blood pressure 80/30 mm Hg

Disability: Lethargic; mumbling; confused

Exposure: Rectal temperature 39.0°C (102.2°F); petechial-purpuric rash over extremities and torso; weight 41 kg

Identify

- Immediate intervention needed

Intervene

- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Administer 100% oxygen by non-breathing face mask.
- Apply cardiac monitor.
- Apply pulse oximeter.

Identify

- Hypotensive shock (likely septic shock)

Intervene

- Obtain vascular access (IV/IO).
- Administer a 20 mL/kg bolus of isotonic crystalloid IV/IO.
 - Reassess during and after fluid bolus.
 - Stop fluid bolus if signs of heart failure develop (eg, development of respiratory distress rales or hepatomegaly).
- Administer antibiotics (if not already done) within first hour of recognition of shock. If possible, obtain blood culture before antibiotic administration, but don’t delay antibiotic or fluid administration.
- Check point-of-care (POC) glucose and treat hypoglycemia if needed.

© 2016 American Heart Association
Evaluate—Secondary Assessment
Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until Hypotension Corrected

SAMPLE history (only to extent needed to evaluate reversible causes)
- **Signs and symptoms:** Fever and lethargy for 24 hours
- **Allergies:** None known
- **Medications:** None
- **Past medical history:** Previously well
- **Last meal:** No oral intake for 6 hours
- **Events (onset):** 24-hour history of fever and increasing lethargy; noted to be confused in last 2 hours

Physical examination
- **Repeat vital signs after oxygen and fluids:** Heart rate 122/min; respiratory rate 35/min; SpO2 100% with 100% inspired oxygen; blood pressure 84/32 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Mucous membranes slightly dry; neck supple
- **Heart and lungs:** Rapid rate; no extra heart sounds or murmurs; lungs sound clear
- **Abdomen:** No palpable liver edge; nondistended; nontender; normal bowel sounds
- **Extremities:** Warm hands and feet; mottled; bounding peripheral pulses
- **Back:** Normal
- **Neurologic:** Lethargic; pupils 4 mm, equal, reactive

Identify
- **Hypotensive distributive/septic shock**

Intervene
- **If signs of shock persist,** repeat fluid bolus of 20 mL/kg of isotonic crystalloid IV/IO as needed. Reassess during and after each fluid bolus.
 - Stop fluid bolus if signs of heart failure develop (e.g., development of respiratory distress, rales, or hepatomegaly).
- **Begin vasoactive drug therapy** within first hour of the recognition of shock if systemic perfusion fails to improve after bolus fluid therapy.
 - Consider administration of epinephrine infusion (or dopamine, if epinephrine is not available).
- **Ensure that bolus fluid therapy, administration of antibiotics, and initiation of vasoactive therapy (if shock is fluid refractory) are all accomplished within the first hour after the identification of signs of septic shock.**
- **Assess response to oxygen administration.**
- **Arrange for transfer to ICU for closer monitoring if child is not already in ICU.**

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- **Capillary gas:** pH 7.16; Pco2 20 mm Hg; Po2 20 mm Hg; base deficit/excess −10; lactate 5.0 mmol/L; hemoglobin 11 g/dL
- **Glucose (POC):** 185 mg/dL (10.3 mmol/L)
- **Pending:** Electrolytes, blood urea nitrogen/creatinine, calcium, complete blood count with differential, prothrombin time/international normalized ratio/partial thromboplastin time
- **Cultures:** Blood, urine

Imaging
- **Chest x-ray:** Small heart, clear lung fields

Identify/Intervene
- **The blood glucose concentration should be checked with POC testing whenever the infant or child is critically ill.** Hypoglycemia should be treated immediately.
- **Metabolic acidosis with partial respiratory compensation should correct if shock resuscitation is effective.**

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 8
Distributive Shock (Adolescent; Septic Shock)

General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 Dominating the discussion

General Management Objectives

- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors

Action
- Directs assessment of ABCDE and vital signs
- Administers 100% oxygen
- Applies cardiac monitor and pulse oximeter
- Identifies signs and symptoms of distributive (septic) shock in an adolescent
- Categorizes shock as hypotensive
- Directs establishment of IV or IO access
- Directs rapid administration of a 20 mL/kg fluid bolus of isotonic crystalloid
- Reassesses the patient during and in response to interventions, particularly during and after each fluid bolus; stops fluid bolus if signs of heart failure develop
- Repeats fluid bolus as needed to treat shock with careful reassessment during and after each fluid bolus
- Checks glucose with POC testing early in the care of the lethargic infant
- Directs early (i.e., within first hour after identification of shock signs) administration of antibiotics
- Directs initiation of vasoactive drug therapy within the first hour after the recognition of shock if shock fails to respond to fluid boluses
- Verbalizes therapeutic end points during shock management (normalization of heart rate and blood pressure; improvement in peripheral perfusion, mental status, and urine output)

Gather
- **Student Observations**
 - Can you describe the events from your perspective?
 - How well do you think your treatments worked?
 - Can you review the events of the scenario (directed to the Timer/Recorder)?
 - What could you have improved?
 - What did the team do well?

Analyze
- **Done Well**
 - How were you able to [insert action here]?
 - Why do you think you were able to [insert action here]?
 - Tell me a little more about how you [insert action here].

Summarize
- **Student-Led Summary**
 - What are the main things you learned?
 - Can someone summarize the key points made?
 - What are the main take-home messages?

Instructor Observations
- I noticed that [insert action here].
- I observed that [insert action here].
- I saw that [insert action here].

Needs Improvement
- Why do you think [insert action here] occurred?
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]?

Instructor-Led Summary
- Let’s summarize what we learned...
- Here is what I think we learned...
- The main take-home messages are...
- What are the therapeutic end points during shock management? (Answer: Normalized heart rate; improved peripheral perfusion, mental status, and urine output; normalized blood pressure; correction of metabolic/lactic acidosis)
Scenario Lead-in
Prehospital: You are dispatched to a house where a 12-year-old boy has lethargy, tachypnea, and a racing heart.
ED: An ambulance is en route to the emergency department with a 12-year-old boy with lethargy, tachypnea, and a racing heart.
General Inpatient Unit: You are called to examine a 12-year-old boy with lethargy, tachypnea, and a racing heart.
ICU: You are called to the bedside of a 12-year-old boy who says he has a racing heart and now has lethargy.

Scenario Overview and Learning Objectives
Scenario Overview
Emphasis should be on diagnosis and management of supraventricular tachycardia (SVT) in an unstable patient, including possible rapid bolus administration of adenosine (only if intravenous [IV]/intraosseous [IO] access is readily available) and the safe delivery of synchronized cardioversion using appropriate doses. Vagal maneuvers may be performed while preparing adenosine or while preparing for synchronized cardioversion but should not delay intervention. If time allows, the instructor may briefly discuss the need for expert consultation before administering a precardioversion sedative to a child with hemodynamic instability.

Scenario-Specific Objectives
• Differentiates between SVT and sinus tachycardia; in this scenario, the child has unstable SVT
• Describes potential vagal maneuvers used for a child with SVT; potential maneuvers used in children include blowing through an obstructed straw and carotid sinus massage
• Demonstrates the proper rapid bolus technique to administer adenosine
• Discusses indications for synchronized cardioversion; in this scenario, the child has poor perfusion, including hypotension, acutely altered mental status (new lethargy), and signs of shock
• Demonstrates safe delivery of synchronized cardioversion with appropriate dose in a patient with SVT and poor perfusion

Evaluate—Initial Impression
(Pediatric Assessment Triangle)
Appearance
• Moaning; minimal response to caregivers
Breathing
• Increased rate and effort, including nasal flaring
Circulation
• Pale and mottled

Identify
• Immediate intervention needed

Intervene
• Activate the emergency response system. Emergency medical services requests additional assistance if needed.
• Administer 100% oxygen by nonre-breathing face mask.
• Apply cardiac monitor.
• Apply pulse oximeter.

Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion
• Airway: Clear
• Breathing: Respiratory rate 34/min; \(\text{SpO}_2\) 92% before supplementary oxygen and 100% after; crackles throughout lung fields
• Circulation: Heart rate 235/min; weak central pulses, thready peripheral pulses; cool/mottled skin; capillary refill about 6 seconds; blood pressure 75/55 mm Hg
• Disability: Deferred until after successful rhythm conversion
• Exposure: Temperature 37.6°C (99.7°F); weight 50 kg

Identify
• Altered level of consciousness
• Narrow-complex tachycardia/SVT with a pulse and poor perfusion
• Respiratory distress vs respiratory failure
• Hypotensive shock

Intervene
• Establish IV/IO access if possible but do not delay cardioversion if IV/IO access is not readily available.
• Guide child to perform vagal maneuvers if they do not delay adenosine or cardioversion.
• If functional IV is in place or is established immediately, administer adenosine.
 – Begin recording continuous rhythm strip.
 – Give adenosine 0.1 mg/kg (max 6 mg) IV/IO by rapid bolus followed by rapid saline flush.

Vital Signs
<table>
<thead>
<tr>
<th>Vital Sign</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>235/min</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>75/55 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>34/min</td>
</tr>
<tr>
<td>(\text{SpO}_2)</td>
<td>92% on room air</td>
</tr>
<tr>
<td>Temperature</td>
<td>37.6°C (99.7°F)</td>
</tr>
<tr>
<td>Weight</td>
<td>50 kg</td>
</tr>
<tr>
<td>Age</td>
<td>12 years</td>
</tr>
</tbody>
</table>
Evaluate—Primary Assessment

Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

Identify

- If first dose of adenosine is unsuccessful, administer adenosine 0.2 mg/kg rapid bolus (max 12 mg), if it can be given more rapidly than synchronized cardioversion. Ensure that rapid bolus technique is used to administer the drug.
- If adenosine is ineffective, provide immediate synchronized cardioversion.
 - Deliver synchronized cardioversion as soon as it is available, unless other therapies (eg, adenosine) have worked by the time synchronized cardioversion can be delivered. (Note: Do not delay cardioversion to attempt other therapies if synchronized cardioversion can be provided immediately.)
 - If functional IV/IO access and expertise is immediately available, provide sedation before cardioversion if it won’t delay cardioversion. Use caution; expertise is required to avoid worsening hemodynamic instability.
 - As soon as a monitor/defibrillator arrives, attach pads and begin recording rhythm strip.
 - “Clear” and perform synchronized cardioversion (0.5 to 1 J/kg).
 - If synchronized cardioversion is unsuccessful, “clear” and perform synchronized cardioversion with 2 J/kg.
- Prepare to assist ventilation (with bag-mask device) if needed.

Intervene

- SVT with poor perfusion converts to sinus rhythm if rapid adenosine or cardioversion is provided.

Evaluate—Secondary Assessment

Deferred Until After Rhythm Conversion

Identify

- SVT with poor perfusion converts to sinus rhythm if rapid adenosine or cardioversion is provided.

Intervene

- After rhythm conversion
 - Reassess and monitor patient’s cardiorespiratory status.
 - Evaluate for signs of heart failure (enlarged liver, extra heart sounds or murmurs, crackles/rales).
 - Prepare to insert advanced airway if needed.
 - Wean supplementary oxygen as tolerated if child stabilizes.
 - Obtain 12-lead electrocardiogram (ECG).
 - Check glucose with POC testing.

SAMPLE history

- **Signs and symptoms:** Tachycardia; lethargy; hypotension
- **Allergies:** None known
- **Medications:** None
- **Past medical history:** History of SVT about 4 years ago
- **Last meal:** Ate 6 hours ago
- **Events (onset):** Acute onset 30 minutes ago

Physical examination

- **Repeat vital signs after successful rhythm conversion:** Heart rate 104/min; sinus rhythm; respiratory rate 28/min; SpO₂ 100% on 100% oxygen by nonrebreathing mask; blood pressure 100/60 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Clear; no audible breath sounds
- **Heart and lungs:** Sinus rhythm; central and peripheral pulses strong; capillary refill 3 seconds; no murmur, gallop, or rub appreciated; fine scattered crackles at bases on auscultation
- **Abdomen:** Liver not palpable below the costal margin
- **Extremities:** Cool peripherally
- **Back:** Unremarkable
- **Neurologic:** Cries out in pain with cardioversion; opens eyes and moves spontaneously, answering questions with single words or short phrases
- **Point-of-care (POC) glucose concentration** (see below)

If no rhythm conversion or delay in administering adenosine or cardioversion

- **Vital signs:** Heart rate 235/min; weak central pulses, peripheral pulses barely palpable; cool/mottled skin; capillary refill about 6 seconds; respiratory rate 34/min; SpO₂ 93% despite 100% oxygen via nonrebreathing mask; crackles throughout lung fields; blood pressure 72/54 mm Hg
<table>
<thead>
<tr>
<th>Evaluate—Diagnostic Assessments</th>
<th>Identify/Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab data</td>
<td>• Although laboratory tests are generally not appropriate during the immediate</td>
</tr>
<tr>
<td>• Blood glucose</td>
<td>management, a blood glucose concentration should be checked as soon as</td>
</tr>
<tr>
<td>• Electrolytes</td>
<td>reasonably possible in all critically ill infants and children. Hypoglycemia</td>
</tr>
<tr>
<td>Imaging</td>
<td>should be treated immediately.</td>
</tr>
<tr>
<td>• Chest x-ray, 12-lead ECG in SVT and in sinus rhythm</td>
<td>• Laboratory studies (other than POC glucose testing) are</td>
</tr>
<tr>
<td></td>
<td>deferred until rhythm is converted and systemic perfusion and hemodynamic</td>
</tr>
<tr>
<td></td>
<td>function are improved.</td>
</tr>
</tbody>
</table>

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 9
SVT (Adolescent; Unstable)

General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives

- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

Action

- Directs assessment of ABCDE and vital signs
- Applies cardiac monitor and pulse oximeter
- Directs administration of supplementary oxygen
- Identifies rhythm as SVT with a pulse and poor perfusion and distinguishes it from sinus tachycardia
- Describes how to perform appropriate vagal maneuvers for a child
- Directs establishment of IV/IO access if it will not delay synchronized cardioversion
- Directs preparation and rapid bolus administration of appropriate dose of adenosine
- Directs safe delivery of attempted cardioversion at dose of 0.5 J/kg; if ineffective, increases dose to 2 J/kg
- Performs frequent reassessments after each intervention

Gather

- **Student Observations**
 - Can you describe the events from your perspective?
 - How well do you think your treatments worked?
 - Can you review the events of the scenario (directed to the Timer/Recorder)?
 - What could you have improved?
 - What did the team do well?

- **Instructor Observations**
 - I noticed that [insert action here].
 - I observed that [insert action here].
 - I saw that [insert action here].

Analyze

- **Done Well**
 - How were you able to [insert action here]?
 - Why do you think you were able to [insert action here]?
 - Tell me a little more about how you [insert action here].
- **Needs Improvement**
 - Why do you think [insert action here] occurred?
 - How do you think [insert action here] could have been improved?
 - What was your thinking while [insert action here]?
 - What prevented you from [insert action here]?

Summarize

- **Student-Led Summary**
 - What are the main things you learned?
 - Can someone summarize the key points made?
 - What are the main take-home messages?
- **Instructor-Led Summary**
 - Let’s summarize what we learned…
 - Here is what I think we learned…
 - The main take-home messages are…
 - Ask students to state the indications for synchronized cardioversion.
 - If time allows, discuss need for expert consultation before administering precardioversion sedative to child with SVT and hemodynamic instability.
Practice Case Scenario 10

Wide-Complex Tachycardia, Possible Ventricular Tachycardia (Infant; Stable)

Scenario Lead-in

Prehospital: You are en route to a call for a 3-month-old infant with irritability and cold-like symptoms.

ED: You are called to the emergency department to help out with a 3-month-old infant with irritability and cold-like symptoms.

General Inpatient Unit: You are called to the bedside of a 3-month-old infant who was admitted with irritability and cold-like symptoms.

ICU: You are called to see a 3-month-old infant who was admitted to the intensive care unit for a respiratory distress episode earlier in the day.

Scenario Overview and Learning Objectives

Scenario Overview

Emphasis should be on the recognition of wide-complex tachycardia in a stable patient and consideration of adenosine (if rhythm regular and QRS is monomorphic). In addition, providers should search for and treat reversible causes (e.g., hypokalemia or hyperkalemia). Provision of synchronized cardioversion and administration of antiarrhythmics are beyond the scope of this scenario, but discussion regarding indications for synchronized cardioversion, including appropriate dose and safe delivery, should occur after completing the scenario. Expert consultation with a pediatric cardiologist is strongly recommended before such interventions because expertise is required to minimize potential negative hemodynamic effects.

Scenario-Specific Objectives

- Differentiates between ventricular tachycardia (VT) and supraventricular tachycardia (SVT) with a pulse and poor perfusion; in this scenario, the child’s wide-complex tachycardia is probably VT
- Differentiates between pulseless VT and wide-complex tachycardia (possible VT) with a pulse
- Describes the indications for synchronized cardioversion in VT; in this scenario, the infant has respiratory distress but no hypotension, acutely altered mental status or signs of shock, so does not require immediate synchronized cardioversion
- Discusses possible administration of adenosine; in this scenario, the wide complexes are in regular rhythm and QRS morphology is monomorphic, so adenosine can be considered
- Describes safe delivery of synchronized cardioversion (if needed) with appropriate dose in an infant with VT and a pulse
- Discusses reason that expert consultation is advised before performing synchronized cardioversion in a stable child with VT

Evaluate—Initial Impression

(Pediatric Assessment Triangle)

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awake; crying</td>
<td>No immediate intervention needed</td>
<td>Proceed to Primary Assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breathing</th>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous; nasal congestion; no increased work of breathing apparent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circulation</th>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale skin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluate—Primary Assessment

- **Airway:** Crying
- **Breathing:** Upper airway congestion; bilateral air entry; no use of accessory muscles; no nasal flaring; respiratory rate 36/min; \(\text{SpO}_2 \) 97% when receiving 30% oxygen by face mask
- **Circulation:** Heart rate 220/min; blood pressure 96/54 mm Hg; pale skin; capillary refill 3 seconds; strong central pulses, palpable peripheral pulses; QRS complexes are regular and monomorphic
- **Disability:** Awake; fussy; eyes open
- **Exposure:** Afebrile; weight 6 kg

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide-complex tachycardia (possible VT) with a pulse and adequate perfusion (stable)</td>
<td>Activate the emergency response system. Emergency medical services requests additional assistance if needed.</td>
</tr>
<tr>
<td>Regular, monomorphic complexes</td>
<td>Administer supplementary oxygen if needed.</td>
</tr>
<tr>
<td></td>
<td>Apply cardiac monitor.</td>
</tr>
<tr>
<td></td>
<td>Apply pulse oximeter.</td>
</tr>
<tr>
<td></td>
<td>Identify rhythm: wide-complex tachycardia (possible VT) with a pulse and adequate perfusion.</td>
</tr>
<tr>
<td></td>
<td>Obtain 12-lead electrocardiogram (ECG).</td>
</tr>
<tr>
<td></td>
<td>Search for and treat reversible causes.</td>
</tr>
<tr>
<td></td>
<td>Obtain vascular access (intravenous [IV]).</td>
</tr>
</tbody>
</table>
Evaluate—Primary Assessment

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider adenosine administration.</td>
<td></td>
</tr>
<tr>
<td>- Record continuous rhythm strip during administration.</td>
<td></td>
</tr>
<tr>
<td>- Give adenosine 0.1mg/kg, rapid IV push (max 6 mg).</td>
<td></td>
</tr>
<tr>
<td>- If first dose of adenosine is unsuccessful, administer adenosine 0.2 mg/kg, rapid IV push (max 12 mg). Ensure that rapid push administration technique is used to administer the drug.</td>
<td></td>
</tr>
<tr>
<td>- If adenosine is ineffective, seek expert consultation.</td>
<td></td>
</tr>
</tbody>
</table>

Evaluate—Secondary Assessment

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent stable, wide-complex tachycardia with a pulse and adequate perfusion</td>
<td></td>
</tr>
<tr>
<td>Monitor cardiorespiratory function for signs of heart failure (enlarged liver, extra heart sounds or murmurs, crackles/rales).</td>
<td></td>
</tr>
<tr>
<td>Search for and treat reversible causes.</td>
<td></td>
</tr>
<tr>
<td>Obtain 12-lead ECG.</td>
<td></td>
</tr>
<tr>
<td>Wean supplementary oxygen as tolerated.</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE history

- Signs and symptoms: Fussy; agitated since early morning
- Allergies: None
- Medications: None
- Past medical history: Delivery at 39 weeks; no problems
- Last meal: 1 oz formula 4 hours ago
- Events: Admitted to floor 6 hours ago with fussiness, agitation, and cold-like symptoms

Physical examination

- Repeat vital signs (adenosine has no effect): Heart rate 218/min (wide-complex tachycardia persists); blood pressure 96/56 mm Hg; respiratory rate 24/min; SpO₂ 97% on room air
- Head, eyes, ears, nose, and throat/neck: Normal
- Heart and lungs: No murmur, gallop, or rub; lungs clear; capillary refill 3 seconds; peripheral pulses weak
- Abdomen: Nondistended; nontender; no masses; normal bowel sounds; no hepatomegaly
- Extremities: No edema; no rash; cool hands and feet
- Back: Normal
- Neurologic: Pupils equal and reactive equal

If sedation and/or cardioversion undertaken without expert consultation

- Vital signs: Heart rate 218/min; wide-complex tachycardia persists; blood pressure 64/38 mm Hg; development of signs of heart failure and poor perfusion

Evaluate—Diagnostic Assessments

Lab data

- Blood glucose
- Electrolytes

Imaging

- Not indicated

Although laboratory tests are generally not appropriate during the immediate management, a blood glucose concentration should be checked with point-of-care testing as soon as reasonable in all critically ill children. Hypoglycemia should be treated immediately.

Serum electrolytes should also be checked as soon as possible. An electrolyte abnormality such as hypokalemia or hyperkalemia may cause ventricular arrhythmias.

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 10
Wide-Complex Tachycardia, Possible VT (Infant; Stable)

General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect

 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions

 Dominating the discussion

General Management Objectives

- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Student Observations</td>
<td>Done Well</td>
<td>Student-Led Summary</td>
</tr>
<tr>
<td></td>
<td>- Can you describe the events from your perspective?</td>
<td>- How were you able to [insert action here]?</td>
<td>- What are the main things you learned?</td>
</tr>
<tr>
<td></td>
<td>- How well do you think your treatments worked?</td>
<td>- Why do you think you were able to [insert action here]?</td>
<td>- Can someone summarize the key points made?</td>
</tr>
<tr>
<td></td>
<td>- Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>- Tell me a little more about how you [insert action here].</td>
<td>- What are the main take-home messages?</td>
</tr>
<tr>
<td></td>
<td>- What could you have improved?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What did the team do well?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructor Observations</td>
<td>Needs Improvement</td>
<td>Instructor-Led Summary</td>
</tr>
<tr>
<td></td>
<td>- I noticed that [insert action here].</td>
<td>- Why do you think [insert action here] occurred?</td>
<td>- Let’s summarize what we learned…</td>
</tr>
<tr>
<td></td>
<td>- I observed that [insert action here].</td>
<td>- How do you think [insert action here] could have been improved?</td>
<td>- Here is what I think we learned…</td>
</tr>
<tr>
<td></td>
<td>- I saw that [insert action here].</td>
<td>- What was your thinking while [insert action here]?</td>
<td>- The main take-home messages are…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- What prevented you from [insert action here]?</td>
<td>- The patient in this scenario did not require synchronized cardioversion. Please describe the indications for synchronized cardioversion, the appropriate first and second energy doses, and how to safely deliver synchronized cardioversion.</td>
</tr>
</tbody>
</table>
Practice Case Scenario 11

Wide-Complex Tachycardia
(Possible Ventricular Tachycardia)
With a Pulse and Poor Perfusion
(Child; Unstable)

Scenario Lead-in
Prehospital: You are en route to a house where a 10-year-old child has acutely developed difficulty breathing.

ED: You are called to the emergency department to help out when a 10-year-old child is brought in after acutely developing difficulty breathing.

General Inpatient Unit: You are called as a member of the rapid response team to see a 10-year-old child who acutely developed difficulty breathing.

ICU: You are called to see a 10-year-old child who was admitted to the intensive care unit for a syncopal episode earlier in the day; he is now having acute difficulty breathing.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis should be on diagnosis and management of unstable wide-complex tachycardia to convert the rhythm and improve systemic perfusion and hemodynamic function. This is accomplished immediately with synchronized cardioversion. If functional intravenous (IV)/intraosseous (IO) access has been established or can be established immediately and expertise is available, sedation may be provided. However, synchronized cardioversion should not be delayed. Providers should also search for and treat reversible causes. Expert consultation is advised. Administration of adenosine or other antiarrhythmics is beyond the scope of this scenario, but discussion regarding indications for adenosine and vagal maneuvers will verify student familiarity with treatment of other tachycardias with a pulse (eg, supraventricular tachycardia [SVT] with a pulse and adequate perfusion).

Scenario-Specific Objectives
- Differentiates between narrow-complex (likely SVT) and wide-complex tachycardia/possible ventricular tachycardia (VT) with a pulse and poor perfusion
- Differentiates between pulseless VT and wide-complex tachycardia (possible VT) with a pulse
- Describes the indications for synchronized cardioversion for wide-complex tachycardia with a pulse and poor perfusion; in this scenario, the child demonstrates hypotension, acutely altered mental status, and signs of shock—these are indications for immediate synchronized cardioversion
- Demonstrates safe delivery of synchronized cardioversion with appropriate shock dose in a patient with wide-complex tachycardia with a pulse
- Describes the reason for caution and need for expertise when considering giving sedative before cardioversion for a child who has tachycardia with a pulse and poor perfusion

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

• Appearance
 - Lethargic; opens eyes to voice but not talking spontaneously

• Breathing
 - Spontaneous, rapid rate; significant retractions; grunting

• Circulation
 - Pale; mottled

Identify
- Immediate intervention needed

Intervene
- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Administer 100% oxygen by nonrebreathing face mask.
- Apply cardiac monitor or monitor/defibrillator.
- Apply pulse oximeter.

Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

• Airway: Clear
• Breathing: Respiratory rate 46/min; SpO2 82% (improves to 94% with 100% oxygen via nonrebreathing mask); subcostal and intercostal retractions; nasal flaring
• Circulation: Heart rate 185/min; blood pressure 74/35 mm Hg; central pulses weak, peripheral pulses very weak; cool peripherally; capillary refill 4-5 seconds
• Disability: Opens eyes to voice; intermittently moaning
• Exposure: Temperature 37.6°C (99.7°F); weight 30 kg

Identify
- Altered level of consciousness
- Wide-complex tachycardia, possible VT, with a pulse and poor perfusion

Intervene
- Obtain vascular access (IV/IO), but do not delay cardioversion.
- Deliver synchronized cardioversion as soon as monitor/defibrillator arrives:
 - If functional IV/IO access and expertise is immediately available, provide sedation if it won’t delay cardioversion. Use caution; expertise is required to avoid worsening hemodynamic instability.

Vital Signs

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>185/min</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>74/35 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>46/min</td>
</tr>
<tr>
<td>SpO2</td>
<td>82% on room air</td>
</tr>
<tr>
<td>Temperature</td>
<td>37.6°C (99.7°F)</td>
</tr>
<tr>
<td>Weight</td>
<td>30 kg</td>
</tr>
<tr>
<td>Age</td>
<td>10 years</td>
</tr>
</tbody>
</table>
Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
</table>
| • Participant may also note
 – Respiratory distress vs respiratory failure
 – Hypotensive shock | – Attach pads and begin recording rhythm strip.
 – “Clear” and perform synchronized cardioversion (0.5-1 J/kg).
 – If initial synchronized cardioversion is unsuccessful, immediately “clear” and perform synchronized cardioversion with 2 J/kg. |

Evaluate—Secondary Assessment
Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until Rhythm Conversion

<table>
<thead>
<tr>
<th>Identify</th>
<th>Intervene</th>
</tr>
</thead>
</table>
| • SAMPLE history (review with parent/primary caretaker only to identify reversible causes)
 • Signs and symptoms: Developed acute shortness of breath and difficulty breathing; no chest pain; no recent illnesses
 • Allergies: None
 • Medications: None
 • Past medical history: Fractured clavicle at age 6
 • Last meal: Supper with family
 • Events: Sudden shortness of breath and difficulty breathing
 Physical examination if cardioversion correctly performed
 • Repeat vital signs postcardioversion: Heart rate 124/min; sinus rhythm; respiratory rate 28/min; SpO₂ 97% with 100% oxygen via nonrebreathing mask; blood pressure 105/78 mm Hg
 • Head, eyes, ears, nose, and throat/neck: Clear; no abnormal audible breath sounds
 • Heart and lungs: No murmur, gallop, or rub; subcostal and intercostal retractions less pronounced; breath sounds equal bilaterally; no wheezes or crackles; central pulses now strong; peripheral pulses; capillary refill 3 seconds
 • Abdomen: Nondistended; nontender; no masses; normal bowel sounds
 • Extremities: Warming
 • Back: Normal
 • Neurologic: Pupils equal and reactive; now opens eyes and moves all extremities spontaneously; answers healthcare providers’ questions
 • Point-of-care glucose: 88 mg/dL
 If no cardioversion
 • Vital signs: Heart rate 185/min; blood pressure 68/33 mm Hg; worsening perfusion (weak central and very faint peripheral pulses); capillary refill 6-7 seconds | • Altered level of consciousness
 • Wide-complex tachycardia (possible VT) with a pulse and poor perfusion converts to sinus rhythm if synchronized cardioversion provided correctly
 • Respiratory distress vs respiratory failure
 • Obtain expert consultation.
 • Search for and treat reversible causes.
 • After rhythm conversion
 – Reassess and monitor cardiorespiratory status.
 – Evaluate for signs of heart failure (enlarged liver, extra heart sounds or murmurs, crackles).
 – Assist ventilation with bag-mask device if needed.
 – Prepare to insert advanced airway if needed.
 – Wean supplementary oxygen as tolerated if child remains stable after cardioversion.
 – Obtain 12-lead electrocardiogram (ECG).
 – Check glucose with point-of-care testing. |

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

<table>
<thead>
<tr>
<th>Identify/Intervene</th>
</tr>
</thead>
</table>
| • Although laboratory tests are generally not appropriate during the immediate management, a blood glucose concentration should be checked as soon as reasonably possible in all critically ill infants and children. Hypoglycemia should be treated immediately.
 • Serum electrolytes should also be checked as soon as possible. An electrolyte abnormality such hypokalemia or hyperkalemia may cause ventricular arrhythmias. |

<table>
<thead>
<tr>
<th>Lab data</th>
<th>Imaging</th>
</tr>
</thead>
</table>
| • Blood glucose: 88 mg/dL
 • Electrolytes
 • A blood gas (arterial, venous, or capillary blood gas) and electrolytes not indicated in the immediate management of this child, but could be considered after stabilization to guide further management | • Chest x-ray (evaluate for cardiomegaly, pulmonary edema, or effusions)
 • Repeat ECG |

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 11
Wide-Complex Tachycardia (Possible VT) With a Pulse and Poor Perfusion
(Child; Unstable)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

### Action	Gather	Analyze	Summarize
Student Observations
- Can you describe the events from your perspective?
- How well do you think your treatments worked?
- Can you review the events of the scenario *(directed to the Timer/Recorder)*?
- What could you have improved?
- What did the team do well?

Instructor Observations
- I noticed that [insert action here].
- I observed that [insert action here].
- I saw that [insert action here].

Done Well
- Why do you think you were able to [insert action here]?
- Tell me a little more about how you [insert action here].

Needs Improvement
- Why do you think [insert action here] occurred?
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]?

Instructor-Led Summary
- Let's summarize what we learned...
- Here is what I think we learned...
- The main take-home messages are...
- What are the indications for synchronized cardioversion in a child with tachycardia and a pulse and poor perfusion?
 (Answer: Hypotension, acutely altered mental status, signs of shock)
- Although this patient had unstable wide-complex tachycardia, what interventions would be appropriate if this child demonstrated stable, narrow-complex tachycardia?
 (Answers: Vagal maneuvers, adenosine [first dose 0.1 mg/kg rapid bolus, maximum 6 mg; second dose 0.2 mg/kg rapid bolus])
- If this child had no central pulses, how would you treat the child?
 (Answer: As cardiac arrest with shockable rhythm)
Practice Case Scenario 12
Pulseless Arrest, Pulseless Ventricular Tachycardia
(Infant; Arrest)

Scenario Lead-in
Prehospital: You are dispatched to a home where a 6 month old suddenly became gray and apneic. Babysitter called 9-1-1 and initiated CPR.
ED: An ambulance is en route with a 6-month-old infant who suddenly became limp and gray. CPR is in progress.
General Inpatient Unit: You are called as a member of the rapid response team to see a 6 month old who suddenly became limp and gray. The infant was admitted for observation following a period of apnea. CPR is in progress.
ICU: You are called to see a 6 month old who suddenly became limp and gray. Patient was admitted following a period of apnea. CPR is in progress.

Scenario Overview and Learning Objectives

Scenario Overview
This scenario focuses on the identification and management of cardiac arrest and a “shockable” rhythm. Emphasis is placed on immediate delivery of high-quality CPR and integration of shock delivery while minimizing interruptions in CPR. One shock followed by CPR, and then (when pulseless ventricular tachycardia [VT] persists) a second shock followed by CPR + epinephrine, and then (when pulseless VT persists) a third shock followed by CPR + antiarrhythmic (amiodarone or lidocaine) are administered before return of spontaneous circulation (ROSC). Identification of potential causes (H’s and T’s) should be discussed during debriefing.
Insertion of advanced airway and post-ROSC care are beyond the scope this scenario. Post-ROSC care is addressed with the asystole scenario.

Scenario-Specific Objectives
• Identifies cardiac arrest with a shockable rhythm; in this scenario, the infant has pulseless VT
• Demonstrates safe shock delivery with appropriate dose and minimal interruption of chest compressions; the correct initial dose is 2 J/kg, second shock is 4 J/kg, and subsequent doses are at least 4 J/kg (maximum 10 J/kg or adult dose for the defibrillator)
• Describes correct dose and rationale for epinephrine administration
• Uses appropriate antiarrhythmic in ventricular fibrillation (VF)/pulseless VT; the 2015 AHA Guidelines Update for CPR and ECC noted that either amiodarone or lidocaine is equally acceptable
• Identifies reversible causes of persistent pulseless VT; during the debriefing, the student should be asked to recall possible reversible causes of cardiac arrest (recalled by conditions beginning with H’s and T’s)

Evaluate—Initial Impression
(Pediatric Assessment Triangle)
Appearance
• Extremities appear to be limp; no spontaneous movement and no visible reaction to noise
Breathing
• No spontaneous breathing
Circulation
• Cyanotic/pale extremities and lips; overall gray color

Identify
• Immediate intervention needed

Intervene
• Activate the emergency response system. Emergency medical services requests additional assistance if needed.
• Check for response (no response) and perform simultaneous check for breathing (none) and brachial pulse (none).
• Immediately begin high-quality CPR.

Evaluate—Primary Assessment
Deferred to Initiate Immediate Basic Life Support, and Then Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion
• Should verify airway, breathing, and circulation support
• Monitor reveals pulseless VT
• Weight 8 kg per color-coded length-based resuscitation tape

Identify
• Cardiopulmonary arrest
• Pulseless VT cardiac arrest

Intervene
• Use a CPR feedback device, if available, to guide CPR delivery.
• When defibrillator arrives, apply pads/leads and turn on monitor.
• Identify rhythm (pulseless VT, shockable).
• Attempt defibrillation with 2 J/kg as soon as possible.
• Resume high-quality CPR immediately after shock delivery.
• Obtain vascular access (intravenous [IV]/intraosseous [IO]).
• Apply pulse oximeter (per local protocol, may be deferred until return of spontaneous circulation [ROSC]).

Vital Signs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>CPR in progress</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>CPR in progress</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Bag-mask ventilation (CPR)</td>
</tr>
<tr>
<td>SpO₂</td>
<td>Not obtainable</td>
</tr>
<tr>
<td>Temperature</td>
<td>Deferred</td>
</tr>
<tr>
<td>Weight</td>
<td>8 kg</td>
</tr>
<tr>
<td>Age</td>
<td>6 months</td>
</tr>
</tbody>
</table>
Evaluate—Secondary Assessment
Deferred Except to Identify Reversible Causes

SAMPLE history (deferred until ROSC or only to extent needed to evaluate reversible causes, ie, H’s and T’s; do not interrupt resuscitation)
• Signs and symptoms: Infant suddenly became limp; no precursors
• Allergies: None known
• Medications: None
• Past medical history: None
• Last meal: 1 hour ago
• Events (onset): As specified in scenario lead-in

Physical examination (deferred until ROSC or only to extent needed to evaluate reversible causes)
• Vital signs after ROSC following high-quality CPR, a total of 3 shocks delivered, 1 dose of epinephrine, and 1 dose of antiarrhythmic (amiodarone or lidocaine): Sinus rhythm; heart rate 140/min; respiratory rate 30/min (bag-mask ventilation); SpO₂ 100%; blood pressure 84/50 mm Hg; temperature 36.4°C (97.5°F)

If no shock is delivered, pulseless VT continues.

Evaluate—Diagnostic Assessments
Perform Throughout the Evaluation of the Patient as Appropriate

Identify/Intervene

Identify
• Laboratory data
• Blood glucose 112 mg/dL (6.2 mmol/L) (after ROSC)
• Arterial/venous blood gas, electrolytes, calcium, magnesium

Imaging
• Chest x-ray (after ROSC): Normal heart and lung fields

Intervene
• Continue high-quality CPR; reassess rhythm every 2 minutes.
• If a shockable rhythm persists at second rhythm check, give second shock of 4 J/kg, followed by immediate CPR.
• Prepare epinephrine 0.01 mg/kg (0.1 mL/kg of 0.1 mg/mL concentration) IV/IO and administer during chest compressions.
 – Repeat every 3-5 minutes during cardiac arrest.
• If shockable rhythm persists at third rhythm check, deliver shock, resume CPR, and prepare and administer antiarrhythmic drug for persistent VF/pulseless VT during chest compressions.
 – Administer amiodarone 5 mg/kg IV/IO bolus (maximum single dose 300 mg) or lidocaine 1 mg/kg IV/IO.
 – Any subsequent shocks should be at dose of 4 J/kg or higher (maximum 10 J/kg or standard adult dose for that defibrillator).
 – Consider endotracheal intubation, especially if unable to provide adequate ventilation with bag-mask device and advanced care provider is available.

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 12
Pulseless Arrest, Pulseless VT (Infant; Arrest)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.

Encourage: Students to self-reflect

Avoid: Mini-lectures and closed-ended questions

Dominating the discussion

General Management Objectives
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

Action
- Identifies cardiac arrest
- Directs immediate initiation of high-quality CPR with the use of a feedback device (if available) and monitors quality throughout resuscitation
- Directs placement of monitor leads/pads and activation of monitor
- Identifies pulseless VT cardiopulmonary arrest
- Directs safe performance of first shock of 2 J/kg
- After each shock, directs immediate resumption of high-quality CPR, beginning with chest compressions
- Directs establishment of IV or IO access
- If pulseless VT persists at second rhythm check, directs safe delivery of a second shock, using a dose of 4 J/kg; any subsequent shocks should use a dose of 4 J/kg or higher (maximum 10 J/kg or standard adult dose)
- Directs preparation and administration of appropriate IV/IO dose (0.01 mg/kg [0.1 mL/kg of the 0.1 mg/mL concentration]) of epinephrine at appropriate intervals
- If VF persists at third rhythm check, directs that antiarrhythmic with appropriate dose (amiodarone 5 mg/kg or lidocaine 1 mg/kg) be administered when compressions resume
- Performs appropriate reassessments

Gather

Student Observations
- Can you describe the events from your perspective?
- How well do you think your treatments worked?
- Can you review the events of the scenario (directed to the Timer/Recorder)?
- What could you have improved?
- What did the team do well?

Instructor Observations
- I noticed that [insert action here].
- I observed that [insert action here].
- I saw that [insert action here].

Analyze

Done Well
- How were you able to [insert action here]?
- Why do you think you were able to [insert action here]?
- Tell me a little more about how you [insert action here].

Needs Improvement
- Why do you think [insert action here] occurred?
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]?

Summarize

Student-Led Summary
- What are the main things you learned?
- Can someone summarize the key points made?
- What are the main take-home messages?

Instructor-Led Summary
- Let’s summarize what we learned...
- Here is what I think we learned...
- The main take-home messages are...
- If the infant’s VF failed to respond to the therapies given, what else should you consider? (Answer: H’s and T’s—ie, reversible causes)
- If a third shock is needed, what dose is used? (Answer: 4 J/kg or higher; maximum 10 J/kg or standard adult dose for that defibrillator)
Practice Case Scenario 13
Obstructive Shock
(Child; Hypotensive; Tension Pneumothorax)

Scenario Lead-in
Prehospital: You are on scene with an 8-year-old boy. He was intubated with an oral-tracheal tube because of depressed mental status, and then he suddenly deteriorated and is being manually ventilated by another care provider. An intravenous catheter is in place.

ED: An 8-year-old boy is being transported by emergency medical services. He has been intubated with an oral-tracheal tube for decreased level of consciousness (a Glasgow Coma Scale Score of 4). He suddenly deteriorated and is being manually ventilated through the endotracheal tube. An intravenous catheter is in place.

General Inpatient Unit: You are called to the room of an 8-year-old boy who was just intubated by the rapid response team for pneumonia and hypoxemia. An oral-tracheal tube was placed. As the team was preparing to transport him to the intensive care unit, the child suddenly deteriorated and is being manually ventilated through the endotracheal tube. An intravenous catheter is in place.

ICU: You are called to the room of an 8-year-old boy who is intubated and mechanically ventilated. He has suddenly deteriorated and is being manually ventilated through the endotracheal tube. An intravenous catheter is in place.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis is placed on immediate recognition of respiratory failure and signs of obstructive shock. The provider should use the DOPE (Displacement of the tube, Obstruction of the tube, Pneumothorax, Equipment failure) mnemonic to quickly identify a tension pneumothorax as the cause and then must perform immediate needle decompression followed by chest tube insertion. Emphasize the importance of performing the needle decompression before obtaining a chest x-ray.

Scenario-Specific Objectives
- Recognizes compensated vs hypotensive shock; this case illustrates hypotensive shock (key indicators in this case include hypotension, tachycardia, and decreased level of consciousness)
- Summarizes signs and symptoms of obstructive shock; key indicators in this case include signs of shock combined with evidence of tension pneumothorax
- Summarizes the elements of the DOPE mnemonic for an intubated patient with sudden deterioration; in this scenario, displacement of tube, obstruction of tube, and equipment failure should be ruled out before needle decompression
- Demonstrates correct interventions for tension pneumothorax; in this scenario, interventions include needle decompression, a chest x-ray, and chest tube insertion
- Discusses conditions under which fluid bolus administration would be appropriate for treatment of obstructive shock; although fluid resuscitation is not needed in this scenario, bolus fluid administration may be helpful for cardiac tamponade, until pericardiocentesis can be performed and in massive pulmonary embolus

Evaluate—Initial Impression
(Pediatric Assessment Triangle)
Appearance
- No spontaneous movement; flaccid extremities; no visible reaction to noise
Breathing
- Orally intubated; poor chest wall movement with manual ventilation using a resuscitation bag
Circulation
- Pale skin; dusky mucous membranes

Identify
- Immediate intervention needed

Intervene
- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Continue manual ventilation with 100% oxygen.
- Apply cardiac monitor.
- Apply pulse oximeter.

Evaluate—Primary Assessment
Focused on Assessment Needed to Restore Patent Airway, Oxygenation, Ventilation, and Perfusion
- Airway: Orally intubated with a 6.0 cuffed endotracheal tube (ETT); secured at 18 cm at the lip
- Breathing: Manually ventilated; asymmetric chest rise, absent breath sounds on the right; increasing inspiratory pressure needed to produce chest expansion; SpO₂ 68% despite receiving 100% inspired oxygen. As student evaluates using DOPE mnemonic, provide the following responses to student queries and actions:

Identify
- Respiratory failure and hypotensive shock

Intervene
- Analyze rhythm (sinus tachycardia).
- Assess response to oxygen and manual ventilation (no change).
- Check waveform capnography (if applicable).

Vital Signs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>140/min</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>80/54 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>Manual ventilation</td>
</tr>
<tr>
<td>SpO₂</td>
<td>68% on 100% oxygen</td>
</tr>
<tr>
<td>Temperature</td>
<td>37.2°C (99.0°F)</td>
</tr>
<tr>
<td>Weight</td>
<td>20 kg</td>
</tr>
<tr>
<td>Age</td>
<td>8 years</td>
</tr>
</tbody>
</table>

© 2016 American Heart Association
Evaluate—Primary Assessment

Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

- Displacement: Depth of insertion unchanged; breath sounds present on left; exhaled CO₂ still detectable
- Obstruction: Normal breath sounds on left; if ETT is withdrawn slightly to detect and treat possible left main stem intubation, there is no change in the breath sounds, chest rise, or resistance to manual ventilation
- Pneumothorax (consistent with current clinical picture)
- Equipment failure: Ruled out by switching to manual ventilation with bag
- **Circulation:** Heart rate 140/min; weak pulses; capillary refill 5 seconds; blood pressure 80/54 mm Hg
- **Disability:** Unconscious; pupils equal and reactive to light
- **Exposure:** Temperature 37.2°C (99.0°F); weight 20 kg

Identify

- Probable tension pneumothorax and obstructive shock

Intervene

- Rule out endotracheal tube displacement and obstruction and equipment failure.
- Perform needle decompression on right side (inserting an 18- to 20-gauge over-the-needle catheter over the top of the child’s third rib, second intercostal space in the midclavicular line).
- Obtain chest x-ray and insert chest tube.

Evaluate—Secondary Assessment

Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until Effective Ventilation Established (After Needle Thoracostomy)

SAMPLE history (only to extent needed to evaluate reversible causes)

- **Signs and symptoms:** Orally intubated for respiratory failure; sudden deterioration
- **Allergies:** None known
- **Medications:** None
- **Past medical history:** None
- **Last meal:** Nothing by mouth
- **Events (onset):** Sudden deterioration in intubated patient

Physical examination

- **Repeat vital signs after oxygen:** Heart rate 175/min; manual ventilation at 24 breaths/min
 - If needle decompression performed: SpO₂ 85% and rising; blood pressure increases to 110/65 mm Hg; capillary refill 3 seconds
 - If needle decompression not performed: SpO₂ 58% and falling; blood pressure becomes undetectable and cardiac arrest develops; capillary refill extremely prolonged
- **Head, eyes, ears, nose, and throat/neck**
 - If needle decompression performed: Normal
 - If needle decompression not performed: Jugular vein distention
- **Heart and lungs**
 - If needle decompression performed: Breath sounds equal bilaterally and there is decreased resistance to manual ventilation
 - If needle decompression not performed: Breath sounds absent on right
- **Abdomen:** Normal
- **Extremities**
 - If needle decompression performed: 2+ central and peripheral pulses, capillary refill 3 seconds
 - If needle decompression not performed: No palpable pulses, capillary refill extremely prolonged
- **Back:** Normal
- **Neurologic:** Unconscious

Identify

- Respiratory failure
- Hypotensive obstructive shock (corrects when needle decompression performed; if needle decompression is not performed, pulseless arrest develops)
- Tension pneumothorax

Intervene

- Reassess cardiorespiratory function (particularly ventilation and perfusion); immediate improvement should be noted following needle decompression.
- Verify that intravenous catheter remains patent.
- Check glucose with point-of-care (POC) testing.
- Arrange for transfer to intensive care unit (ICU) (if child is not already in ICU) for closer monitoring and treatment of underlying conditions.

Evaluate—Diagnostic Assessments

Perform Throughout the Evaluation of the Patient as Appropriate

Lab data

- Pending: Arterial blood gas or venous blood gas

Imaging

- Chest radiograph (should not delay intervention until chest x-ray performed)

Identify/Intervene

- Laboratory diagnostic testing is deferred until treatment of the tension pneumothorax.
- A blood glucose concentration should be checked as soon as reasonably possible in all critically ill children, particularly neonates and infants. Hypoglycemia should be treated immediately.
- **Note:** Needle decompression is performed before obtaining chest x-ray (ie, the chest x-ray should follow needle decompression but can precede chest tube insertion).

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool

Practice Case Scenario 13

Obstructive Shock (Child; Hypotensive; Tension Pneumothorax)

General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives

- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

Action | Gather | Analyze | Summarize

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>How were you able to [insert action here]?</td>
<td>What are the main things you learned?</td>
<td></td>
</tr>
<tr>
<td>Done Well</td>
<td>Why do you think you were able to [insert action here]?</td>
<td>Can someone summarize the key points made?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tell me a little more about how you [insert action here].</td>
<td>What are the main take-home messages?</td>
<td></td>
</tr>
</tbody>
</table>

Instructor Observations

- I noticed that [insert action here].
- I observed that [insert action here].
- I saw that [insert action here].

Needs Improvement

- Why do you think [insert action here] occurred?
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]? |

Instructor-Led Summary

- Let’s summarize what we learned...
- Here is what I think we learned...
- The main take-home messages are...
- Name 2 additional causes of obstructive shock. (Answer: Cardiac tamponade, massive pulmonary embolism, and closure of the ductus arteriosus in infants with ductal-dependent congenital heart lesions)
- Please highlight key aspects of the management of cardiac tamponade (fluid bolus and pericardiocentesis), massive pulmonary embolus (oxygen, ventilatory support, fluid bolus, and expert consultation) and ductal closure in neonates with ductal-dependent congenital heart disease (prostaglandin infusion and expert consultation).
(continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• What are the therapeutic end points during shock management? (Answer: Normalized heart rate; improved peripheral perfusion, mental status, and urine output; normalized blood pressure; correction of metabolic/lactic acidosis)</td>
</tr>
</tbody>
</table>
Scenario Lead-in

Prehospital: You have been dispatched to transport a 4-month-old female infant with a 48-hour history of respiratory distress.

ED: You are asked to assess and manage a 4-month-old female infant who has increased work of breathing with substernal and intercostal retractions, a breathless cry, and wheezing. She has a 3-day history of respiratory distress and increased lethargy. The infant was seen by her pediatrician 2 days ago for wheezing and respiratory distress and was given steroids and nebulizer treatments with no improvement.

General Inpatient Unit: You are called to the bedside of a 4-month-old female infant who has been admitted to the ward with a 24-hour history of increased work of breathing and increased oxygen requirement. She has crackles and wheezing and an increased oxygen requirement. Her occasional cry sounds “breathless.” The infant now appears mottled and lethargic. Her intravenous access is no longer functioning.

ICU: You are called to the bedside of a 4-month-old female infant who has been admitted to the intensive care unit with a 24-hour history of increased respiratory distress. She has crackles and wheezing and an increased oxygen requirement. Her occasional cry sounds “breathless.” The infant now appears mottled and lethargic. Her intravenous access is no longer functioning.

Vital Signs
- **Heart rate:** 180/min
- **Blood pressure:** 60/30 mm Hg
- **Respiratory rate:** 60/min
- **SpO\(_2\):** 89% on room air
- **Temperature:** 35.7°C (96.2°F)
- **Weight:** 7 kg
- **Age:** 4 months

Scenario Overview and Learning Objectives

Scenario Overview

Emphasis should be on identification and rapid treatment of hypotensive cardiogenic shock. Priorities include immediate establishment of intravenous (IV) access and careful administration of a small bolus of isotonic crystalloid over 10-20 minutes, with careful reassessment of cardiorespiratory function during and after the fluid bolus. The provider should recognize the development of signs of worsening heart failure during the administration of the fluid bolus and stop bolus fluid administration. The infant requires inotropic therapy to improve cardiac function and vasoactive drug therapy to improve blood pressure and systemic perfusion. The infant may need additional support with continuous positive airway pressure (CPAP), noninvasive bilevel positive-pressure ventilation, or other positive-pressure ventilation support to improve oxygenation. Expert consultation from a pediatric cardiologist and further diagnostic studies (including echocardiography) are needed.

Scenario-Specific Objectives

- **Differentiates compensated vs hypotensive shock:** In this scenario, the child is hypotensive, so has hypotensive shock.
- **Differentiates the signs and symptoms of cardiogenic shock from other types of shock:** In this scenario, the combination of signs of hypotensive shock with signs of heart failure (labored breathing, crackles, and hepatomegaly) and evidence of decreased perfusion (mottling, cyanosis, lethargy) point to likely cardiogenic shock.
- **Provides correct interventions for cardiogenic shock:** In this scenario, these interventions include establishment of cardiac monitoring and pulse oximetry, careful bolus administration of isotonic crystalloids, careful reassessment during and after each fluid bolus, and initiation and titration of inotropic/vasoactive drugs.
- **Describes correct volume and duration of bolus fluid administration for cardiogenic shock and describes possible negative effects of excessive bolus fluid administration:** In this scenario, signs of intolerance of bolus fluid administration include worsening of signs of heart failure with no improvement in shock signs.

Evaluate—Initial Impression

Pediatric Assessment Triangle

- **Appearance**
 - Lethargic; minimal reaction to noises in room
- **Breathing**
 - Labored breathing with moderate to severe intercostal and subcostal retractions
- **Circulation**
 - Pale; significant mottling with peripheral cyanosis noted

Identify

- **Immediate intervention needed**
- **Activate emergency response system, if appropriate.**
- **Administer 100% oxygen by nonrebreathing face mask.**
- **Apply cardiac monitor.**
- **Apply pulse oximeter.**

Intervene

- **Administer 100% oxygen by nonrebreathing face mask.**
- **Apply cardiac monitor.**
- **Apply pulse oximeter.**

Evaluate—Primary Assessment

Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

- **Airway:** Patent
- **Breathing:** Respiratory rate about 60/min; mild intercostal retractions; nasal flaring and intermittent grunting; SpO\(_2\) 89% on room air, 100% with 100% oxygen
- **Circulation:** Heart rate 180/min; central pulses present (not strong) and peripheral pulses weak and tachycardia; capillary refill about 4 seconds; cool, mottled hands and feet; blood pressure 60/30 mm Hg
- **Disability:** Lethargic; responds to painful stimuli
- **Exposure:** Temperature 35.7°C (96.2°F); weight 7 kg

Identify

- **Respiratory distress**
- **Hypotensive shock, probably cardiogenic**
- **Sinus tachycardia**

Intervene

- **Obtain vascular (IV/intraosseous [IO]) access.**
- **Administer a fluid bolus of 5-10 mL/kg of isotonic crystalloid IV/IO over 10-20 minutes.**
- **Perform careful and frequent reassessment during and after fluid bolus.**
- **Check glucose using point-of-care (POC) testing.**
Evaluate—Secondary Assessment

Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Initial Shock Therapy

SAMPLE history (only to extent needed to evaluate reversible causes)
- **Signs and symptoms:** Increased work of breathing and lethargy
- **Allergies:** No known allergies
- **Medications:** None
- **Past medical history:** No past history of illness
- **Last meal:** Poor intake for last 12 hours
- **Events (onset):** 24 hours of increased respiratory distress and difficulty breathing, no improvement with steroids or nebulizer treatments

Physical examination
- **Repeat vital signs after oxygen and first fluid bolus:** Heart rate 180/min; respiratory rate 75/min; SpO₂ 89% while receiving 100% oxygen by nonrebreather face mask; blood pressure 56/30 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Mucous membranes slightly dry
- **Heart and lungs:** Rapid rate; systolic murmur now detected; crackles and retractions worsening
- **Abdomen:** Liver edge palpable at 3 cm below costal margin; nondistended abdomen; hypoactive bowel sounds
- **Extremities:** Cold upper and lower extremities; mottled; weak peripheral pulses
- **Back:** Normal
- **Neurologic:** Lethargic; pupils 4 mm, equal, reactive

Identify

- **Cardiogenic shock**
- **Hypotensive shock**
- **Worsening respiratory distress after fluid bolus**
- **Possible respiratory failure**

Intervene

- **Stop bolus fluid administration** (signs of heart failure worsening).
- **Begin appropriate inotropic/vasoactive support** if hypotension and assess response.
- **Assess response to oxygen administration.**
- **Identify persistent hypoxemia despite oxygen administration.**
 - Administer CPAP or noninvasive bilevel positive-pressure ventilation or other support if hypoxemia and respiratory distress continue.
- **Obtain 12-lead electrocardiogram (ECG).**
- **Obtain a pediatric cardiology consultation and an echocardiogram, if available.**
- **Arrange for transfer to the intensive care unit (ICU) for closer monitoring, if infant is not already in ICU.**

Evaluate—Diagnostic Assessments

Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- **Arterial blood gas (after initiation of CPAP or positive-pressure ventilation):** pH 7.25; PCO₂ 20 mm Hg; PO₂ 170 mm Hg; lactate 4.9 mmol/L
- **Glucose (POC testing)** 80 mg/dL (4.4 mmol/L)
- **Pending:** Electrolytes, blood urea nitrogen/creatinine, calcium, complete blood count with differential, prothrombin time/international normalized ratio/partial thromboplastin time
- **Cultures:** Blood, urine

Imaging
- **Chest x-ray:** Cardiomegaly; increased pulmonary vascular markings

Re-evaluate-identify-intervene after each intervention.
General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 - Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 - Dominating the discussion

General Management Objectives

- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

Action

<table>
<thead>
<tr>
<th>GATHER</th>
<th>ANALYZE</th>
<th>SUMMARIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Student-Led Summary</td>
</tr>
<tr>
<td>Can you describe the events from your perspective?</td>
<td>How were you able to [insert action here]?</td>
<td>What are the main things you learned?</td>
</tr>
<tr>
<td>How well do you think your treatments worked?</td>
<td>Why do you think you were able to [insert action here]?</td>
<td>Can someone summarize the key points made?</td>
</tr>
<tr>
<td>Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>Tell me a little more about how you [insert action here].</td>
<td>What are the main take-home messages?</td>
</tr>
<tr>
<td>What could you have improved?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What did the team do well?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructor Observations

- I noticed that [insert action here].
- I observed that [insert action here].
- I saw that [insert action here].

Needs Improvement

- Why do you think [insert action here] occurred?
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]?

Instructor-Led Summary

- Let’s summarize what we learned...
- Here is what I think we learned...
- The main take-home messages are...
- What are the therapeutic end points during shock management? (Answer: Normalized heart rate; improved peripheral perfusion, mental status, and urine output; normalized blood pressure; correction of metabolic/lactic acidosis)
Practice Case Scenario 15
Disordered Control of Breathing Disease (Infant)

Scenario Lead-in
Prehospital: You respond to a 9-1-1 call for a 6 month old having a seizure.
ED: Emergency medical services arrives with a 6-month-old boy brought from his home after mother called 9-1-1 because her child had a seizure.
General Inpatient Unit: You are called to the room of a 6-month-old boy who is being admitted after having a seizure.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis of this scenario is on recognition and immediate management of an infant with respiratory failure and disordered control of breathing (inadequate respiratory rate and effort and decreased level of consciousness after a seizure that likely complicates an episode of meningitis). This infant requires immediate opening of the airway and bag-mask ventilation with 100% oxygen. During debriefing, discuss indications for intubation in this patient and methods to estimate appropriate cuffed and uncuffed endotracheal tube sizes.

Scenario-Specific Objectives
- Identifies respiratory distress vs respiratory failure; in this scenario, respiratory failure is present
- Summarizes signs of disordered control of breathing; in this scenario, the infant demonstrated inadequate spontaneous respiratory effort with very slow and shallow breaths, although they were regular
- Recalls causes of disordered control of breathing; cues to the instructor: common causes include drugs, increased intracranial pressure, and seizures
- Discusses correct interventions for disordered control of breathing; in this scenario, interventions include opening the airway and bag-mask ventilation with 100% oxygen

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Appearance
- Lethargic; eyes closed; no visible reaction to his mother’s voice or noises in environment

Breathing
- Very slow respiratory rate with minimal chest rise

Circulation
- Pink skin

Identify
• Immediate intervention needed
Intervene
• Activate the emergency response system. Emergency medical services requests additional assistance if needed.
• Position the infant to open airway.
• Begin bag-mask ventilation with 100% oxygen.
• Apply cardiac monitor.
• Apply pulse oximeter.

Evaluate—Primary Assessment
Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

- Airway: Paradoxical movement of chest and abdomen when breathing, relieved when airway opened
- Breathing: Spontaneous respiratory rate 12/min; shallow and regular; SpO₂ 80% on room air and 99% with bag-mask ventilation with 100% oxygen at a rate of 30/min
- Circulation: Heart rate 146/min; dusky (before bag-mask ventilation with 100% oxygen); strong central and peripheral pulses; capillary refill 2 seconds; blood pressure 88/56 mm Hg
- Disability: Lethargic; responsive to painful stimuli
- Exposure: Temperature 39.7°C (103.5°F); weight 7 kg

Identify
• Respiratory failure (inadequate respiratory rate and effort)
Intervene
• Verify chest rise with bag-mask ventilation and monitor response to bag-mask ventilation with oxygen.
• Continue bag-mask ventilation with 100% oxygen and monitor for increase in infant’s spontaneous respiratory effort—match ventilation with infant’s effort if possible.
• Consider insertion of oropharyngeal airway if infant is unresponsive with no cough or gag reflex.
• Establish vascular access (intravenous).
• Treat fever with antipyretic.

Vital Signs
- Heart rate: 146/min
- Blood pressure: 88/56 mm Hg
- Respiratory rate: 12/min
- SpO₂: 80% on room air
- Temperature: 39.7°C (103.5°F)
- Weight: 7 kg
- Age: 6 months
Evaluate—Secondary Assessment

Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until After Stabilization of Airway, Oxygenation, and Ventilation

SAMPLE history
- **Signs and symptoms:** Fever, irritable for the last 3 days
- **Allergies:** None known
- **Medications:** Acetaminophen given by mother 2 hours ago
- **Past medical history:** None—no history of previous seizure disorder
- **Last meal:** Ate 3 hours ago
- **Events (onset):** Abrupt onset of tonic-clonic seizure lasting approximately 5 minutes

Physical examination
- **Repeat vital signs with assisted ventilation with 100% oxygen:** Respiratory rate 30/min with bag-mask ventilation now assisting the infant’s spontaneous respiratory effort; heart rate 136/min; SpO₂ 99% with inspired oxygen concentration of 100%; blood pressure 94/58 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Airway clear; pupils 3 mm bilateral and reactive; tense anterior fontanelle
- **Heart and lungs:** Clear breath sounds; good chest rise with assisted ventilation; rate and depth of spontaneous breaths increasing
- **Abdomen:** Normal
- **Extremities:** No edema; no rash
- **Back:** Normal
- **Neurologic:** Level of consciousness unchanged; moves all 4 extremities with painful stimulus but in nonpurposeful fashion

Evaluate—Diagnostic Assessments

Perform Throughout the Evaluation of the Patient as Appropriate

Lab data
- Glucose (bedside) 166 mg/dL (9.2 mmol/L)
- Electrolytes; blood urea nitrogen/creatinine; complete blood count with differential; blood culture

Imaging
- Chest x-ray: Ordered

Identify/Intervene

- Respiratory failure (inadequate respiratory rate and depth)
- Disordered control of breathing

- Closely monitor infant’s level of consciousness, spontaneous respiratory effort, and airway protective mechanisms (ability to cough to protect airway). Remove oral airway if responsiveness improves or cough or gag reflex returns.
- If infant’s spontaneous respiratory effort improves, provide bag-mask ventilation that assists the infant’s respiratory effort.
- As patient will continue to be bradypneic with a reduced level of consciousness, continue bag-mask ventilation with 100% oxygen, and obtain expert consultation to plan for advanced airway insertion and support of ventilation.
- Check glucose using point-of-care testing.
- Arrange for transfer to higher level of care for evaluation, observation, and care.

- A blood glucose concentration should be checked as soon as reasonably possible in all critically ill infants and children. This infant had a seizure and still has decreased level of consciousness, so it will be important to check the glucose.
- It is not always possible to obtain an arterial blood gas.

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 15
Disordered Control of Breathing Disease (Infant)

General Debriefing Principles
- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.

Encourage: Students to self-reflect
- Engagement of all participants

Avoid: Mini-lectures and closed-ended questions
- Dominating the discussion

General Management Objectives
- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Action</th>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
</table>
| Directs assessment of ABCDE and vital signs | **Student Observations**
- Can you describe the events from your perspective?
- How well do you think your treatments worked?
- Can you review the events of the scenario (directed to the Timer/Recorder)?
- What could you have improved?
- What did the team do well? | **Done Well**
- How were you able to [insert action here]?
- Why do you think you were able to [insert action here]?
- Tell me a little more about how you [insert action here]. | **Student-Led Summary**
- What are the main things you learned?
- Can someone summarize the key points made?
- What are the main take-home messages? |

<table>
<thead>
<tr>
<th>Instructor Observations</th>
<th>Needs Improvement</th>
<th>Instructor-Led Summary</th>
</tr>
</thead>
</table>
| I noticed that [insert action here]. | **Why do you think [insert action here] occurred?**
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]? | **Let’s summarize what we learned…**
- Here is what I think we learned…
- The main take-home messages are…
- What were the indications for endotracheal intubation in an infant with disordered control of breathing? (Answers: Inadequate spontaneous respiratory effort and/or failure to maintain a patent airway, signs of possible increased intracranial pressure)
- If the infant requires intubation, how would you estimate the size of cuffed and uncuffed endotracheal tube to use? |

<table>
<thead>
<tr>
<th>Instructor Observations</th>
<th>Needs Improvement</th>
<th>Instructor-Led Summary</th>
</tr>
</thead>
</table>
| I observed that [insert action here]. | **Why do you think [insert action here] occurred?**
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]? | **Let’s summarize what we learned…**
- Here is what I think we learned…
- The main take-home messages are…
- What were the indications for endotracheal intubation in an infant with disordered control of breathing? (Answers: Inadequate spontaneous respiratory effort and/or failure to maintain a patent airway, signs of possible increased intracranial pressure)
- If the infant requires intubation, how would you estimate the size of cuffed and uncuffed endotracheal tube to use? |

<table>
<thead>
<tr>
<th>Instructor Observations</th>
<th>Needs Improvement</th>
<th>Instructor-Led Summary</th>
</tr>
</thead>
</table>
| I saw that [insert action here]. | **Why do you think [insert action here] occurred?**
- How do you think [insert action here] could have been improved?
- What was your thinking while [insert action here]?
- What prevented you from [insert action here]? | **Let’s summarize what we learned…**
- Here is what I think we learned…
- The main take-home messages are…
- What were the indications for endotracheal intubation in an infant with disordered control of breathing? (Answers: Inadequate spontaneous respiratory effort and/or failure to maintain a patent airway, signs of possible increased intracranial pressure)
- If the infant requires intubation, how would you estimate the size of cuffed and uncuffed endotracheal tube to use? |
Practice Case Scenario 16

Bradycardia
(Child; Seizure)

Scenario Lead-in

Prehospital: You are dispatched to the home of an 8-year-old child who was having a generalized seizure and received rectal diazepam; he now has decreased respiratory effort.

ED: Paramedics arrive with an 8-year-old child who was having a generalized seizure and received rectal diazepam; he now has decreased respiratory effort.

General Inpatient Unit: You are a member of the rapid response team called to evaluate an 8-year-old who had a generalized seizure on the floor and received intravenous lorazepam; he now has decreased respiratory effort.

ICU: You are asked to evaluate an 8-year-old who just had a seizure and received intravenous lorazepam; he now has decreased respiratory effort.

Scenario Overview and Learning Objectives

Scenario Overview
Emphasis should be placed on identification and treatment of hypoxic bradycardia associated with disordered control of breathing/respiratory depression and upper airway obstruction. Priorities include immediate establishment of a patent airway and effective bag-mask ventilation with 100% oxygen. Provider may need to reopen airway and reattempt bag-mask ventilation before it produces effective chest rise. Chest compressions are not required because the heart rate, oxygenation, and perfusion rise quickly once effective bag-mask ventilation is provided. If the patient cannot maintain a patent airway and does not recover adequate spontaneous ventilation, providers should prepare for advanced airway insertion. The student should describe how to estimate the child’s endotracheal tube size. Discussion of flumazenil as a receptor antagonist is beyond the scope of the scenario and the drug is contraindicated for this patient (it can lower seizure threshold).

Scenario-Specific Objectives
- Demonstrates support of oxygenation and ventilation in a patient with hypoxic bradycardia
- Recognizes indications for CPR in bradycardic patient; in this scenario, compressions are not needed because the child’s heart rate and oxygenation quickly improve once effective bag-mask ventilation with oxygen is provided
- States 3 causes of bradycardia; these include hypoxia (most common), vagal stimulation, heart block, and drug overdose
- Describes appropriate indications for and dose of epinephrine for bradycardia

Evaluate—Initial Impression
(Pediatric Assessment Triangle)

Appearance
- No visible reaction to noise

Breathing
- Very slow respiratory rate

Circulation
- Pale; lips slightly dusky

Identify

- Immediate intervention needed

Intervene

- Activate the emergency response system. Emergency medical services requests additional assistance if needed.
- Check for response (no response) and perform simultaneous check for breathing (still very slow) and carotid pulse (slow pulse detected).
- Begin bag-mask ventilation with 100% oxygen.
- Apply cardiac monitor.
- Apply pulse oximeter.

Vital Signs

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>45/min</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>85/54 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>6/min</td>
</tr>
<tr>
<td>SpO₂</td>
<td>62% before bag-mask ventilation with oxygen</td>
</tr>
<tr>
<td>Temperature</td>
<td>39.3°C (102.7°F)</td>
</tr>
<tr>
<td>Weight</td>
<td>27 kg</td>
</tr>
<tr>
<td>Age</td>
<td>8 years</td>
</tr>
</tbody>
</table>
Evaluate—Primary Assessment

Focused on Assessment Needed to Support Airway, Oxygenation, Ventilation, and Perfusion

Airway: Snoring respirations

Breathing: Spontaneous respiratory rate 6/min; SpO_2 62% on room air; initially bag-mask ventilation with 100% oxygen produces no chest rise and poor air entry bilaterally; if provider reopens airway and reattempts bag-mask ventilation, significant improvement in ease of ventilation and chest rise is apparent, and SpO_2 rises rapidly

Circulation: Initial heart rate 45/min (sinus bradycardia); weak peripheral pulses; 2+ central pulses; capillary refill 3-4 seconds; blood pressure 85/54 mm Hg; heart rate increases to 95/min with effective bag-mask ventilation with 100% oxygen

Disability: Unresponsive

Exposure: Temperature 39.3°C (102.7°F); weight 27 kg; no rashes

Evaluate—Secondary Assessment

Identify Reversible Causes, but Defer Remainder of Secondary Assessment Until Heart Rate 60/min or Greater With Adequate Perfusion

SAMPLE history

- **Signs and symptoms:** Had generalized tonic-clonic seizure and received benzodiazepine as noted
- **Allergies:** None
- **Medications:** Levitracetam
- **Past medical history:** Known seizure disorder; last seizure was 6 months ago
- **Last meal:** Ate normally 2 hours ago
- **Events (onset):** Upper respiratory infection symptoms for 2 days; generalized tonic-clonic seizure lasting 12 minutes; seizure activity stopped 5 minutes before team’s arrival

Physical examination

- **Repeat vital signs after effective bag-mask ventilation:** Heart rate increases to 95/min; SpO_2 95% with bag-mask ventilation at a rate of 16-20/min with 100% oxygen; blood pressure 95/54 mm Hg
- **Head, eyes, ears, nose, and throat/neck:** Continues to be ventilated with bag-mask device with oropharyngeal airway in place; pupils 3 mm, equal, and reactive to light
- **Heart and lungs:** No murmur; good air entry with positive-pressure ventilation; 2+ central and peripheral pulses; capillary refill 3 seconds
- **Abdomen:** Soft; no organomegaly
- **Extremities:** Unremarkable
- **Back:** Unremarkable
- **Neurologic:** Remains unresponsive to painful stimulation; pupils 3 mm, equal, and reactive to light
- **Point-of-care (POC) glucose** (see below)

Evaluate—Diagnostic Assessments

Perform Throughout the Evaluation of the Patient as Appropriate

Lab data

- Blood glucose 107 mg/dL
- A blood gas (arterial, venous, or capillary) not indicated in the immediate management of this child

Imaging

- Head computed tomography if there is a history or physical findings to suggest trauma

Identify

Respiratory failure due to upper airway obstruction and disordered control of breathing

Sinus bradycardia (rate 45/min increases to 95/min with bag-mask ventilation)

Decreased level of consciousness

Identify/Intervene

Insert oral airway.

Reopen airway, reposition face mask, ensure adequate seal to face, and provide bag-mask ventilation that produces chest rise.

Assess heart rate response to ventilation and oxygen administration to determine the need for additional intervention.

Obtain vascular access (intravenous [IV]/intraosseous [IO]).

Re-evaluate-identify-intervene after each intervention.
Debriefing Tool
Practice Case Scenario 16
Bradycardia (Child; Seizure)

General Debriefing Principles

- Use the table below to guide your debriefing; also refer to the Team Dynamics Debriefing Tool.
- Debriefings are 10 minutes long.
- Address all learning objectives.
- Summarize take-home messages at the end of the debriefing.
- **Encourage:** Students to self-reflect
 Engagement of all participants
- **Avoid:** Mini-lectures and closed-ended questions
 Dominating the discussion

General Management Objectives

- Uses the PALS Systematic Approach Algorithm to assess and appropriately classify a patient
- Provides oxygen appropriately
- Directs delivery of high-quality CPR (including the use of a feedback device) when indicated
- Demonstrates basic airway maneuvers and use of relevant airway device as appropriate
- Demonstrates application of cardiac and respiratory monitors
- Identifies the cardiac rhythm
- Applies appropriate PBLS or PALS algorithms
- Summarizes general indications, contraindications, and doses of relevant drugs
- Discusses principles of family-centered care in pediatric cardiac arrest
- Applies the 8 elements of effective team dynamics
- Performs frequent reassessment

Action
- Directs assessment of ABCDE and vital signs
- Identifies bradycardia associated with hypoxia that is caused by upper airway obstruction and disordered control of breathing (ie, hypoventilation)
- Directs insertion of oral airway and bag-mask ventilation with 100% oxygen
- Applies cardiac monitor and pulse oximeter
- Reassesses heart rate and perfusion after initiation of bag-mask ventilation with oxygen
- Determines that chest compressions and epinephrine administration are not needed because heart rate increases adequately with establishment of patent airway, adequate oxygenation, and ventilation
- Directs establishment of IV or IO access
- Checks glucose with POC testing in this unresponsive patient
- Discusses preparation for advanced airway placement
- Performs frequent reassessment

<table>
<thead>
<tr>
<th>Gather</th>
<th>Analyze</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Observations</td>
<td>Done Well</td>
<td>Student-Led Summary</td>
</tr>
<tr>
<td>Can you describe the events from your perspective?</td>
<td>How were you able to [insert action here]?</td>
<td>What are the main things you learned?</td>
</tr>
<tr>
<td>How well do you think your treatments worked?</td>
<td>Why do you think you were able to [insert action here]?</td>
<td>Can someone summarize the key points made?</td>
</tr>
<tr>
<td>Can you review the events of the scenario (directed to the Timer/Recorder)?</td>
<td>Tell me a little more about how you [insert action here].</td>
<td>What are the main take-home messages?</td>
</tr>
<tr>
<td>What could you have improved?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What did the team do well?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructor Observations</th>
<th>Needs Improvement</th>
<th>Instructor-Led Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>I noticed that [insert action here].</td>
<td>Why do you think [insert action here] occurred?</td>
<td>Let’s summarize what we learned...</td>
</tr>
<tr>
<td>I observed that [insert action here].</td>
<td>How do you think [insert action here] could have been improved?</td>
<td>Here is what I think we learned...</td>
</tr>
<tr>
<td>I saw that [insert action here].</td>
<td>What was your thinking while [insert action here]?</td>
<td>The main take-home messages are...</td>
</tr>
<tr>
<td></td>
<td>What prevented you from [insert action here]?</td>
<td>The child in this scenario did not require chest compressions. What would have been the indications for the addition of chest compressions to ventilation (CPR)? (Answer: Heart rate is less than 60/min with signs of poor perfusion despite adequate oxygenation and ventilation.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The child in this scenario did not require epinephrine administration. If it had been necessary, what dose would be appropriate? (Answer: 0.01 mg/kg [0.1 mL/kg of the 0.1 mg/mL concentration])</td>
</tr>
</tbody>
</table>
| | | In addition to hypoxia, what are 3 other causes of bradycardia in infants and children? | (continued)
This scenario did not include advanced airway insertion. In preparing for intubation, how would you estimate the correct cuffed and uncuffed endotracheal tube size for this infant?